基于两水平非线性混合效应模型的长白落叶松削度方程构建

聂璐毅, 董利虎, 李凤日, 苗铮, 谢龙飞

南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (3) : 194-202.

PDF(2012 KB)
PDF(2012 KB)
南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (3) : 194-202. DOI: 10.12302/j.issn.1000-2006.202108050
研究论文

基于两水平非线性混合效应模型的长白落叶松削度方程构建

作者信息 +

Construction of taper equation for Larix olgensis based on two-level nonlinear mixed effects model

Author information +
文章历史 +

摘要

【目的】以长白落叶松(Larix olgensis)人工林干形指标为主要数据,利用非线性混合效应模型构建长白落叶松削度方程,研究不同的二次抽样方案对混合效应模型预估精度的影响。【方法】在不同类型的削度方程中选择拟合效果最好的Kozak方程作为基础模型,通过再参数化的方法引入树冠特征变量,分析树冠大小对干形的影响;在包含树冠变量的模型基础上,结合混合效应模型考虑样地、样木效应对于干形的影响,建立长白落叶松削度方程;采用2种抽样方案(方案Ⅰ,不限定抽样位置;方案Ⅱ,抽样位置限定在相对高0.1以下)对混合效应模型进行精度检验。【结果】树冠变量中冠长率与干形关系最为密切,将冠长率引入模型后,提升了模型的拟合精度,且模型参数在5%显著性水平上均显著。通过似然比检验,样地效应和样木效应极显著提升了模型拟合效果(P<0.01),并使用指数函数和一阶连续自回归结构[CAR(1)]来解决削度方程中普遍存在的异方差和自相关问题,最终的混合效应模型调整后决定系数( R a 2)为0.994 1,均方根误差(RMSE)为0.623 1,拟合效果优于基础模型( R a 2提高了0.4%,RMSE减小了24.6%)。当使用不同的抽样方案进行预测时,方案Ⅰ表现出最高的预测精度,抽样数量为5时,平均绝对误差(MAE)为0.470 0,平均绝对误差百分比(MAPE)为4.62%;而方案Ⅱ不同抽样数量之间的预测效果差别不大(MAE的变化范围为0.520 3~0.536 6,MAPE的变化范围为5.14%~5.22%),但仍优于基础模型。【结论】将冠长率引入模型后,模型对干形的模拟更贴合实际中的林木生长情况;包含样地效应、样木效应的两水平混合效应模型可以很好地模拟长白落叶松的干形变化,为精准估计长白落叶松各材种和立木材积提供了依据。

Abstract

【Objective】 Based on the stem taper data of 177 artificial Larix olgensis trees from 31 permanent sample plots in Heilongjiang Province, a non-linear mixed effect model was used to construct a taper equation for L. olgensis. This will provide a theoretical basis for the precise prediction of the stem shape and tree volume. 【Method】 Among the different types of taper equations, the Kozak equation with the best fitting effect was selected as the basic model, and then the crown characteristic variables were introduced using reparameterization to analyze the influence of the crown size on the stem shape. Based on the model with the crown variables, the two-level mixed-effect model considering the impact of the sample plot effect and the sample tree effect on the stem shape was used to develop the taper equations for Larix olgensis trees. Prediction precision of the mixed-effect models was tested using two different sampling strategies. Strategy Ⅰ: the global optimal plan that does not limit the sampling position. Strategy Ⅱ: the plan with a relatively high limit of less than 0.1. 【Result】 Among the tree crown variables, the crown length rate has the closest relationship with the stem shape. Introducing the crown length rate into the taper equation, the fitting accuracy of the model was improved, and the model parameters were all significant at the 5% significance level. The results of the likelihood ratio test showed that the sample plot effect and the sample tree effect significantly (P < 0.01) improved the model accuracy. The exponential function and CAR (1) structure were used to solve the common heteroscedasticity and autocorrelation problems in the taper equation. The goodness-of-fit for the mixed-effect models for R a 2 was 0.994 1, RMSE was 0.623 1 which was better than the basic model ( R a 2 increased by 0.4%, RMSE decreased by 24.6%). When using a different sampling strategy for model prediction, Strategy Ⅰ had the best results (RMSE was 0.470 0, MAPE was 4.62%), when the sampling number was 5. For Strategy Ⅱ, there were little differences in predicting accuracy with different sampling numbers (the range of MAE was 0.520 3-0.536 6, the range of MAPE was 5.14%-5.22%), but still better than the basic model. 【Conclusion】 The two-level mixed-effects model, including plot effect and tree effect, was better than the basic model for the fitting effect and prediction accuracy, and it will be suitable for effectively predicting stem shape changes in L. olgensis. The results will provide a foundation for precisely predicting the timber volume and total tree volume of L. olgensis.

关键词

长白落叶松 / 干形 / 非线性混合效应模型 / 混合模型校正 / 削度方程

Key words

Larix olgensis / stem shape / nonlinear mixed-effect model / mixed model calibration / taper equation

引用本文

导出引用
聂璐毅, 董利虎, 李凤日, . 基于两水平非线性混合效应模型的长白落叶松削度方程构建[J]. 南京林业大学学报(自然科学版). 2022, 46(3): 194-202 https://doi.org/10.12302/j.issn.1000-2006.202108050
NIE Luyi, DONG Lihu, LI Fengri, et al. Construction of taper equation for Larix olgensis based on two-level nonlinear mixed effects model[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(3): 194-202 https://doi.org/10.12302/j.issn.1000-2006.202108050
中图分类号: S758   

参考文献

[1]
梅光义, 孙玉军. 国内外削度方程研究进展[J]. 世界林业研究, 2015, 28(4): 44-49.
MEI G Y, SUN Y J. Research progress in stem taper[J]. World For Res, 2015, 28(4): 44-49. DOI: 10.13348/j.cnki.sjlyyj.2015.04.006.
[2]
DUAN A, ZHANG S, ZHANG X, et al. Development of a stem taper equation and modelling the effect of stand density on taper for Chinese fir plantations in southern China[J]. Peer J, 2016, 4: e1929. DOI: 10.7717/peerj.1929.
[3]
SANQUETTA M N I, MCTAGUE J P, FERRAÇO S H, et al. What factors should be accounted for when developing a generalized taper function for black wattle trees?[J]. Can J For Res, 2020, 50(11): 1113-1123. DOI: 10.1139/cjfr-2020-0163.
[4]
LIU Y, YUE C F, WEI X H, et al. Tree profile equations are significantly improved when adding tree age and stocking degree: an example for Larix gmelinii in the Greater Khingan Mountains of Inner Mongolia, northeast China[J]. Eur J For Res, 2020, 139(3): 443-458. DOI: 10.1007/s10342-020-01261-z.
[5]
SHARMA M. Incorporating stand density effects in modeling the taper of red pine plantations[J]. Can J For Res, 2020, 50(8): 751-759. DOI: 10.1139/cjfr-2020-0064.
[6]
LARSON P R. Stem form development of forest trees[J]. For Sci, 1963, 9(S2): a0001-42. DOI: 10.1093/forestscience/9.s2.a0001.
[7]
LEITES L P, ROBINSON A P. Improving taper equations of loblolly pine with crown dimensions in a mixed-effects modeling framework[J]. For Sci, 2004, 50(2): 204-212.
[8]
WEISKITTEL A R, HANN D W, KERSHAW J A, et al. Forest growth and yield modeling[M]. Chichester: John Wiley & Sons, Ltd, 2011.
[9]
LI R X, WEISKITTEL A R. Comparison of model forms for estimating stem taper and volume in the primary conifer species of the north American Acadian Region[J]. Ann For Sci, 2010, 67(3): 302.DOI: 10.1051/forest/2009109.
[10]
JIANG L C, BROOKS J R, HOBBS G R. Using crown ratio in yellow-poplar compatible taper and volume equations[J]. North J Appl for, 2007, 24(4): 271-275. DOI: 10.1093/njaf/24.4.271.
[11]
符利勇, 唐守正, 张会儒, 等. 基于多水平非线性混合效应蒙古栎林单木断面积模型[J]. 林业科学研究, 2015, 28(1): 23-31.
FU L Y, TANG S Z, ZHANG H R, et al. Multilevel nonlinear mixed-effects basal area models for individual trees of Quercus mongolica[J]. For Res, 2015, 28(1): 23-31. DOI: 10.13275/j.cnki. lykxyj.2015.01.004.
[12]
SHAHZAD M K, HUSSAIN A, BURKHART H E, et al. Stem taper functions for Betula platyphylla in the Daxing’an Mountains, northeast China[J]. J For Res, 2021, 32(2): 529-541. DOI: 10.1007/s11676-020-01152-4.
[13]
LIU Y, TRANCOSO R, MA Q, et al. Incorporating climate effects in Larix gmelinii improves stem taper models in the Greater Khingan Mountains of Inner Mongolia, northeast China[J]. For Ecol Manag, 2020, 464: 118065. DOI: 10.1016/j.foreco.2020.118065.
[14]
CAO Q V, WANG J. Calibrating fixed- and mixed-effects taper equations[J]. For Ecol Manag, 2011, 262(4): 671-673. DOI: 10.1016/j.foreco.2011.04.039.
[15]
CAO Q V, WANG J. Evaluation of methods for calibrating a tree taper equation[J]. For Sci, 2015, 61(2): 213-219. DOI: 10.5849/forsci.14-008.
[16]
SHARMA M, PARTON J. Modeling stand density effects on taper for jack pine and black spruce plantations using dimensional analysis[J]. For Sci, 2009, 55(3): 268-282. DOI: 10.1093/forestscience/55.3.268.
[17]
KOZAK A. My last words on taper equations[J]. For Chron, 2004, 80(4): 507-515. DOI: 10.5558/tfc80507-4.
[18]
高慧淋, 李凤日, 董利虎. 基于分段回归的人工红松冠形预估模型[J]. 北京林业大学学报, 2015, 37(3): 76-83.
GAO H L, LI F R, DONG L H. Crown-shape model of a Pinus koraiensis plantation in northeastern China[J]. J Beijing For Univ, 2015, 37(3): 76-83. DOI: 10.13332/j.1000-1522.20140324.
[19]
SHARMA R, VACEK Z, VACEK S, et al. A nonlinear mixed-effects height-to-diameter ratio model for several tree species based on Czech national forest inventory data[J]. Forests, 2019, 10(1): 70. DOI: 10.3390/f10010070.
[20]
TRINCADO G, BURKHART H E. A generalized approach for modeling and localizing stem profile curves[J]. For Sci, 2006, 52(6): 670-682.
[21]
VANDERSCHAAF C L, BURKHART H E. Comparison of methods to estimate Reineke’s maximum size-density relationship species boundary line slope[J]. For Sci, 2007, 53(3): 435-442. DOI: 10.1093/forestscience/53.3.435.
[22]
许延丽. 兴安落叶松树干削度和树皮厚度及材积的相容可加性研究[D]. 哈尔滨: 东北林业大学, 2019.
XU Y L. Study on additive equations of stem taper and bark thickness and compatible volume equations for Dahurian larch[D]. Harbin: Northeast Forestry University, 2019.
[23]
PARRESOL B R. Modeling multiplicative error variance: an example predicting tree diameter from stump dimensions in baldcypress[J]. For Sci, 1993, 39(4): 670-679. DOI: 10.1093/forestscience/39.4.670.
[24]
谢龙飞, 董利虎, 李凤日. 人工长白落叶松立木叶面积预估模型[J]. 应用生态学报, 2018, 29(9): 2843-2851.
XIE L F, DONG L H, LI F R. Predicting models of leaf area for trees in Larix olgensis plantation[J]. Chin J Appl Ecol, 2018, 29(9): 2843-2851. DOI: 10.13287/j.1001-9332. 201809.011.
[25]
NI C, NIGH G D. An analysis and comparison of predictors of random parameters demonstrated on planted loblolly pine diameter growth prediction[J]. Forestry, 2012, 85(2): 271-280. DOI: 10.1093/forestry/cps001.
[26]
曾伟生, 唐守正. 立木生物量方程的优度评价和精度分析[J]. 林业科学, 2011, 47(11): 106-113.
ZENG W S, TANG S Z. Goodness evaluation and precision analysis of tree biomass equations[J]. Sci Silvae Sin, 2011, 47(11): 106-113.
[27]
KOZAK A, KOZAK R. Does cross validation provide additional information in the evaluation of regression models?[J]. Can J For Res, 2003, 33(6): 976-987. DOI: 10.1139/x03-022.
[28]
DONG L H, ZHANG L J, LI F R. A compatible system of biomass equations for three conifer species in northeast, China[J]. For Ecol Manag, 2014, 329: 306-317. DOI: 10.1016/j.foreco.2014.05.050.
[29]
董利虎, 李凤日. 大兴安岭东部主要林分类型乔木层生物量估算模型[J]. 应用生态学报, 2018, 29(9): 2825-2834.
DONG L H, LI F R. Stand-level biomass estimation models for the tree layer of main forest types in east Daxing’an Mountains, China[J]. Chin J Appl Ecol, 2018, 29(9): 2825-2834. DOI: 10.13287/j.1001-9332.201809.014.
[30]
YANG Y Q, HUANG S, TRINCADO G, et al. Nonlinear mixed-effects modeling of variable: exponent taper equations for lodgepole pine in Alberta, Canada[J]. Eur J For Res, 2009, 128(4): 415-429. DOI: 10.1007/s10342-009-0286-2.
[31]
VALENTINE H T, GREGOIRE T G. A switching model of Bole taper[J]. Can J For Res, 2001, 31(8): 1400-1409. DOI: 10.1139/x01-061.
[32]
RAMAZAN O, BAL C. Effects of adding crown variables in stem taper and volume predictions for black pine[J]. Turkish J Agric For, 2013, 37(2): 231-242. DOI: 10.3906/tar-1206-2.
[33]
HANN D W, WALTERS D K, SCRIVANI J A. Incorporating crown ratio into prediction equations for Douglas-fir stem volume[J]. Can J For Res, 1987, 17(1): 17-22. DOI: 10.1139/x87-003.
[34]
ASHTON M S, SMITH D M, LARSON B C, et al. The practice of silviculture: Applied forest ecology[M]. London: Wiley-Blackwell, 1997.
[35]
MANUEL A R, CASTEDO-DORADO F, CÁMARA-OBREGÓN A, et al. Fitting and calibrating a multilevel mixed-effects stem taper model for maritime pine in NW Spain[J]. PLoS One, 2015, 10(12): e0143521. DOI: 10.1371/journal.pone.0143521.
[36]
SABATIA C O, BURKHART H E. On the use of upper stem diameters to localize a segmented taper equation to new trees[J]. For Sci, 2015, 61(3): 411-423. DOI: 10.5849/forsci.14-039.
[37]
MCTAGUE J P, WEISKITTEL A. Evolution, history, and use of stem taper equations: a review of their development, application, and implementation[J]. Can J For Res, 2021, 51(2): 210-235. DOI: 10.1139/cjfr-2020-0326.

基金

国家重点研发计划(2017YFD0600402)
长白落叶松高效培育技术省级资助项目(GX18B041)

编辑: 李燕文
PDF(2012 KB)

Accesses

Citation

Detail

段落导航
相关文章

/