NaCl处理下全缘冬青和红果冬青根系的转录组活性比较

张强, 周鹏, 刘昌来, 余永帆, 张敏, 杨甲定

南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (3) : 99-108.

PDF(3582 KB)
PDF(3582 KB)
南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (3) : 99-108. DOI: 10.12302/j.issn.1000-2006.202109054
研究论文

NaCl处理下全缘冬青和红果冬青根系的转录组活性比较

作者信息 +

Comparison of transcriptomic activity of Ilex integra and I. purpurea roots with NaCl treatments

Author information +
文章历史 +

摘要

【目的】研究全缘冬青(Ilex integra)和红果冬青(I. purpurea)的根系在NaCl胁迫处理中的转录组活性差异,为进一步研究二者耐盐性差异的生理学机理奠定基础。【方法】以内含250 mmol/L NaCl的1/2浓度霍格兰德溶液对全缘冬青和红果冬青的两年生扦插苗进行盐胁迫处理,采集经0(盐处理前)、6和72 h盐处理的根系样品,提取总RNA,进行转录组测序,组装转录本,筛选差异表达基因,分析两种冬青根系中的功能富集通路和特定代谢途径的基因表达变化。【结果】全缘冬青根系盐处理6 h的差异表达基因数量为2 616,盐处理72 h为1 802;而红果冬青根系盐处理6 h的差异表达基因数量为1 831,盐处理72 h为3 490。全缘冬青盐处理6和72 h根系中共同的KEGG富集途径为植物激素信号转导、亚油酸代谢、类胡萝卜素生物合成和甜菜红素生物合成,红果冬青根系6和72 h盐处理共同的KEGG富集途径为植物激素信号转导、苯丙烷生物合成和类胡萝卜素生物合成。甜菜红素生物合成和亚油酸/花生四烯酸代谢为盐胁迫处理全缘冬青根系中特有的富集代谢通路。全缘冬青中受盐胁迫正调控的过氧化氢酶基因数多于红果冬青的,并且在盐处理下其表达水平远高于红果冬青的。【结论】全缘冬青根系较强的耐盐性可能与植物激素信号转导、类胡萝卜素生物合成、甜菜红素生物合成和脂肪酸脂类代谢等生理过程相关联;盐处理下过氧化氢酶基因的高效表达也可能是全缘冬青根系具较强耐盐性的因素之一。

Abstract

【Objective】 This research aims to investigate the difference in transcriptomic activity of Ilex integra and I. purpurea roots using NaCl salt treatments and provide insights for future study on the physiological mechanisms responsible for differential salt tolerance between these Ilex species. 【Method】 Two-year-old cutting seedlings of I. integra and I. purpurea were irrigated with half-strength Hoagland solution containing 250 mmol/L NaCl for salt treatments. Root samples were collected at 0(before salt treatment), 6 and 72 h after salt treatments. The total RNAs were extracted for transcriptomic RNA-Seq. Transcripts were assembled and differentially expressed genes (DEGs) were selected. The enriched KEGG functional pathways for the two species were compared, and the expression of genes involved in certain metabolic pathways was analyzed. 【Result】 There were 2 616 and 1 802 DEGs in 6 h-salt-treated and 72 h-salt-treated I. integra roots respectively, while there were 1 831 and 3 490 DEGs in 6 h-salt-treated and 72 h-salt-treated I. purpurea roots, respectively. The common enriched KEGG functional pathways between I. integra roots with 6 and 72 h salt treatments were plant hormone signal transduction, linoleic acid metabolism, carotenoid biosynthesis and betalain biosynthesis. The common enriched pathways between I. integra roots with 6 and 72 h salt treatments were plant hormone signal transduction, phenylpropanoid biosynthesis and carotenoid biosynthesis. Betalain biosynthesis and linoleic acid/arachidonic acid metabolism are unique pathways in I. integra roots during salt treatments. There were more up-regulated putative catalase genes with much higher expression levels in salt-treated I. integra roots than that in the I. purpurea roots. 【Conclusion】 The higher salt tolerance of I. integra roots may be associated with physiological processes such as plant hormone signal transduction, carotenoid biosynthesis, betalain biosynthesis and fatty acid metabolism. The higher expression of catalase genes during salt treatments may also contribute to the higher salt tolerance of I. integra roots.

关键词

全缘冬青 / 红果冬青 / 根系 / NaCl盐胁迫 / 转录组分析 / 代谢途径

Key words

Ilex integra / I. purpurea / roots / NaCl salt treatment / transcriptomic analysis / metabolic pathway

引用本文

导出引用
张强, 周鹏, 刘昌来, . NaCl处理下全缘冬青和红果冬青根系的转录组活性比较[J]. 南京林业大学学报(自然科学版). 2022, 46(3): 99-108 https://doi.org/10.12302/j.issn.1000-2006.202109054
ZHANG Qiang, ZHOU Peng, LIU Changlai, et al. Comparison of transcriptomic activity of Ilex integra and I. purpurea roots with NaCl treatments[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(3): 99-108 https://doi.org/10.12302/j.issn.1000-2006.202109054
中图分类号: Q945;S718   

参考文献

[1]
ZHAO C Z, ZHANG H, SONG C P, et al. Mechanisms of plant responses and adaptation to soil salinity[J]. Innov, 2020, 1(1):100017.DOI: 10.1016/j.xinn.2020.100017.
[2]
赵宣, 韩霁昌, 王欢元, 等. 盐渍土改良技术研究进展[J]. 中国农学通报, 2016, 32(8):113-116.
ZHAO X, HAN J C, WANG H Y, et al. Research progress of saline soil improvement technology[J]. Chin Agric Sci Bull, 2016, 32(8):113-116.
[3]
阿吉艾克拜尔, 邵孝侯, 常婷婷, 等. 我国盐碱地改良技术和方法综述[J]. 安徽农业科学, 2013, 41(16):7269-7271.
HAJIAKBAR, SHAO X H, CHANG T T, et al. A review on improvement technology and methods of saline-alkali soil in China[J]. J Anhui Agric Sci, 2013, 41(16):7269-7271. DOI: 10.13989/j.cnki.0517-6611.2013.16.077.
[4]
杨真, 王宝山. 中国盐渍土资源现状及改良利用对策[J]. 山东农业科学, 2015, 47(4):125-130.
YANG Z, WANG B S. Present status of saline soil resources and countermeasures for improvement and utilization in China[J]. Shandong Agric Sci, 2015, 47(4):125-130.DOI: 10.14083/j.issn.1001-4942.2015.04.032.
[5]
万欣, 江浩, 王磊, 等. 江苏沿海滩涂土壤改良技术研究进展[J]. 江苏林业科技, 2017, 44(5):43-47.
WAN X, JIANG H, WANG L, et al. Progress of soil amelioration technology in coastal beach in Jiangsu Province[J]. Jiangsu For Sci Technol, 2017, 44(5):43-47.
[6]
王健, 李傲瑞. 我国盐碱地改良技术综述[J]. 现代农业科技, 2019(21):182-183,185.
WANG J, LI A R. A summary of improvement techniques of saline-alkali land[J]. Mod Agric Sci Technol, 2019,(21):182-183,185.
[7]
沈徐悦, 金荷仙, 陈蓉蓉, 等. NaCl胁迫对3种木兰科植物幼苗叶片部分生理指标的影响[J]. 植物资源与环境学报, 2020, 29(4):75-77.
SHEN X Y, JIN H X, CHEN R R, et al. Effect of NaCl stress on some physiological indexes of leaves of seedlings of three species in Magnoliaceae[M]. J Plant Resour Environ, 2020, 29(4):75-77. DOI: 10.3969 /j.issn.1674-7895.2020.04.11.
[8]
史成伟, 郭江艳, 翁行良, 等. 红果冬青种子繁殖与培育技术[J]. 绿色科技, 2019(21):116-118.
SHI C W, GUO J Y, WENG X L, et al. Seed propagation and cultivation techniques of Ilex Chinensis[J]. J Green Sci Technol, 2019(21):116-118.DOI: 10.16663/j.cnki.lskj.2019.21.046.
[9]
徐斌芬, 王国明, 王美琴, 等. 全缘冬青和钝齿冬青的分布与繁殖技术[J]. 中国野生植物资源, 2007, 26(4):63-65.
XU B F, WANG G M, WANG M Q, et al. Distribution and propagation of Ilex integra Thunb.and Ilex crenata Thunb.[J]. Chin Wild Plant Resour, 2007, 26(4):63-65.DOI: 10.3969/j.issn.1006-9690.2007.04.018.
[10]
YU Y F, ZHANG M, FENG J Y, et al. Physiological analysis reveals relatively higher salt tolerance in roots of Ilex integra than in those of Ilex purpurea[J]. J For Res, 2021, 9: 1-10.DOI: 10.1007/s11676-021-01386-w.
[11]
GRABHERR M G, HAAS B J, YASSOUR M, et al. Full-length transcriptome assembly from RNA-seq data without a reference genome[J]. Nat Biotechnol, 2011, 29(7): 644-652. DOI: 10.1038/nbt.1883.
[12]
WANG Z R, CUI Y Y, VAINSTEIN A, et al. Regulation of fig (Ficus carica L.) fruit color:metabolomic and transcriptomic analyses of the flavonoid biosynthetic pathway[J]. Front Plant Sci, 2017, 8:1990.DOI: 10.3389/fpls.2017.01990.
[13]
ROY S J, NEGRÃO S, TESTER M. Salt resistant crop plants[J]. Curr Opin Biotechnol, 2014, 26:115-124.DOI: 10.1016/j.copbio.2013.12.004.
[14]
ANAMIKA K, VERMA S, JERE A, et al. Transcriptomic profiling using next generation sequencing-advances,advantages,and challenges[M]//Next Generation Sequencing-Advances,Applications and Challenges. Rijeka, Croatia:InTech, 2016. DOI: 10.5772/61789.
[15]
YU Z P, DUAN X B, LUO L, et al. How plant hormones mediate salt stress responses[J]. Trends Plant Sci, 2020, 25(11):1117-1130.DOI: 10.1016/j.tplants.2020.06.008.
[16]
FRANK H A, COGDELL R J. Carotenoids in photosynthesis[J]. Photochem Photobiol, 1996, 63(3):257-264.DOI: 10.1111/j.1751-1097.1996.tb03022.x.
[17]
HAN R M, ZHANG J P, SKIBSTED L H. Reaction dynamics of flavonoids and carotenoids as antioxidants[J]. Molecules, 2012, 17(2): 2140-2160.DOI: 10.3390/molecules17022140.
[18]
CAZZONELLI C I. Carotenoids in nature:Insights from plants and beyond[J]. Funct Plant Biol, 2011, 38(11):833-847.DOI: 10.1071/FP11192.
[19]
CHEN X Y, HAN H P, JIANG P, et al. Transformation of β-lycopene cyclase genes from Salicornia europaea and Arabidopsis conferred salt tolerance in Arabidopsis and tobacco[J]. Plant Cell Physiol, 2011, 52(5):909-921.DOI: 10.1093/pcp/pcr043.
[20]
TIAN L, DELLAPENNA D, ZEEVAART J A D. Effect of hydroxylated carotenoid deficiency on ABA accumulation in Arabidopsis[J]. Physiol Plant, 2004, 122(3):314-320.DOI: 10.1111/j.1399-3054.2004.00409.x.
[21]
ZHAO S S, ZHANG Q K, LIU MY, et al. Regulation of plant responses to salt stress[J]. Int J Mol Sci, 2021, 22(9): 4609.DOI: 10.3390/ijms22094609.
[22]
DU H, WU N, CHANG Y, et al. Carotenoid deficiency impairs ABA and IAA biosynthesis and differentially affects drought and cold tolerance in rice[J]. Plant Mol Biol, 2013, 83(4/5):475-488.DOI: 10.1007/s11103-013-0103-7.
[23]
于思礼, 刘雪, 张昭宇, 等. 甜菜素的生物合成及其代谢调控进展[J]. 中国生物工程杂志, 2018, 38(8):84-91.
YU S L, LIU X, ZHANG Z Y, et al. Advances of betalains biosynthesis and metabolic regulation[J]. China Biotechnol, 2018, 38(8):84-91.DOI: 10.13523/j.cb.20180811.
[24]
王长泉, 赵吉强, 陈敏, 等. 过氧化氢参与了黑暗诱导的盐地碱蓬叶片甜菜红素积累[J]. 植物生态学报, 2007, 31(4):748-752.
摘要
该文比较研究了黑暗和光照条件下C<sub>3</sub>盐生植物盐地碱蓬(Suaeda salsa)叶片甜菜红素积累和H<sub>2</sub>O<sub>2</sub>含量及其抗氧化酶活性的关系,实验分析了甜菜红素体外抗氧化性能,以期揭示诱导盐地碱蓬甜菜红素积累的可能机制以及甜菜红素积累的生理生态意义。结果表明:暗期处理和营养液中加入一定浓度的H<sub>2</sub>O<sub>2</sub>都明显促进盐地碱蓬叶片H<sub>2</sub>O<sub>2</sub>含量、甜菜红素的含量、超氧化物歧化酶(SOD)和过氧化氢酶(CAT)的活性,而且叶片中H<sub>2</sub>O<sub>2</sub>含量与甜菜红含量、SOD和CAT活性具有正相关性;盐地碱蓬甜菜红素体外清除羟自由基的能力明显强于维生素C,而清除超氧阴离子能力低于维生素C。这些结果表明:黑暗作为一种环境胁迫因子诱导盐地碱蓬叶片甜菜红素的积累可能是由自由基介导的,甜菜红素的积累可能与提高植物的抗氧化能力有关。
WANG C Q, ZHAO J Q, CHEN M, et al. Involvement of hydrogen peroxide in betacyanin accumulation induced by dark in leaves of Suaeda salsa[J]. Chin J Plant Ecol, 2007, 31(4):748-752.
[25]
王佺珍, 刘倩, 高娅妮, 等. 植物对盐碱胁迫的响应机制研究进展[J]. 生态学报, 2017, 37(16):5565-5577.
WANG Q Z, LIU Q, GAO Y N, et al. Review on the mechanisms of the response to salinity-alkalinity stress in plants[J]. Acta Ecol Sin, 2017, 37(16):5565-5577.DOI: 10.5846/stxb201605160941.
[26]
OKAZAKI Y, SAITO K. Roles of lipids as signaling molecules and mitigators during stress response in plants[J]. Plant J, 2014, 79(4):584-596.DOI: 10.1111/tpj.12556.
[27]
GUO Q, LIU L, BARKLA B J. Membrane lipid remodeling in response to salinity[J]. Int J Mol Sci, 2019, 20(17):4264.DOI: 10.3390/ijms20174264.
[28]
TSYDENDAMBAEV V D, IVANOVA T V, KHALILOVA L A, et al. Fatty acid composition of lipids in vegetative organs of the halophyte Suaeda altissima under different levels of salinity[J]. Russ J Plant Physiol, 2013, 60(5):661-671.DOI: 10.1134/s1021443713050142.
[29]
LIU S S, WANG W Q, LI M, et al. Antioxidants and unsaturated fatty acids are involved in salt tolerance in peanut[J]. Acta Physiol Plant, 2017, 39(9):1-10.DOI: 10.1007/s11738-017-2501-y.
[30]
SHANAB S M M, HAFEZ R M, FOUAD A S. A review on algae and plants as potential source of arachidonic acid[J]. J Adv Res, 2018, 11:3-13.DOI: 10.1016/j.jare.2018.03.004.
[31]
SAVCHENKO T, WALLEY J W, CHEHAB E W, et al. Arachidonic acid: an evolutionarily conserved signaling molecule modulates plant stress signaling networks[J]. Plant Cell, 2010, 22(10):3193-3205.DOI: 10.1105/tpc.110.073858.
[32]
GONDIM F A, GOMES-FILHO E, COSTA J H, et al. Catalase plays a key role in salt stress acclimation induced by hydrogen peroxide pretreatment in maize[J]. Plant Physiol Biochem, 2012, 56:62-71.DOI: 10.1016/j.plaphy.2012.04.012.

基金

江苏省林业科技创新与推广项目(LYKJ[2021]07)
江苏省林业科学研究院自主科研项目(ZZKY202105)

编辑: 吴祝华
PDF(3582 KB)

Accesses

Citation

Detail

段落导航
相关文章

/