基于森林资源清查数据的林地利用效率变化研究

许恩银, 聂影, 芮晓东

南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (5) : 213-220.

PDF(1669 KB)
PDF(1669 KB)
南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (5) : 213-220. DOI: 10.12302/j.issn.1000-2006.202103017
研究论文

基于森林资源清查数据的林地利用效率变化研究

作者信息 +

Analysis on the forest land use efficiency changes based on forest resource inventory data

Author information +
文章历史 +

摘要

【目的】定量分析我国重要林区林地利用效率变化差异及对其生态经济的影响,为制定森林资源管理措施提供参考。【方法】从森林资源变动角度,结合森林面积、蓄积量、生物量和碳储量等4个属性,利用1989—2018年森林资源清查数据,从林区和省级两个尺度上量化分析我国南方林区和西南林区的林地利用效率变化。【结果】研究期间,南方林区碳储量增加1.17 Pg,森林面积、蓄积密度、生物量转换比和碳储量的年变化率分别为1.91%、2.07%、0.40%和4.38%;西南林区碳储量增加0.95 Pg,森林面积、蓄积密度、生物量转换比和碳储量的年变化率分别为1.79%、0.07%、-0.05%和1.81%。各省(市、区)森林蓄积量均增加,其中上海、江苏、贵州和西藏林区面积相对贡献最高,而福建和海南林区面积及蓄积密度(即单位面积蓄积)增长速度不均衡将影响后期发展,云南和西藏蓄积密度下降导致蓄积量增长缓慢。各省森林均发挥碳汇作用,南方林区固碳能力优势突出,上海和江苏最为显著,西南林区三省(自治区)林区碳汇均处于缓慢发展水平。【结论】为提高林地利用效率,西南林区应继续提升退耕还林力度,提高补偿标准和年限;对于林龄结构不合理的天然林,应进行可持续经营管理,人为促进更新过熟林以提高其更新能力。南方林区应积极发展造林再造林项目和重点地区速生林工程,发挥人工林生长迅速、在较长时间内维持碳汇能力稳定上升的优势。

Abstract

【Objective】Quantitative analysis of the difference in forest land use efficiency and its eco-economic impact in important forest regions of China can provide a reference for formulating forest resource management measures. 【Method】From the perspective of changes in forest resources, combined with the four attributes of forest area, volume, biomass, and carbon storage, and using forest inventory data for China from 1989 to 2018, the changes in forest land use efficiency in the southern and southwest forest regions are quantitatively analyzed at the forest area and provincial scales. 【Result】During the study period, carbon storage in the southern forest region increases by 1.17 Pg, and the annual change rates for the forest area, volume density, biomass ratio, carbon storage are 1.91%, 2.07%, 0.40%, and 4.38%, respectively. The carbon storage in the southwest forest region increased by 0.95 Pg, and the annual change rates of these attributes are 1.79%, 0.07%, -0.05%, and 1.81%, respectively. The volume has increased for all the provinces, among which Shanghai, Jiangsu, Guizhou, and Tibet have the highest relative contribution. However, the unbalanced growth rate of forest area and volume density (volume per unit area) in Fujian and Hainan will influence the later development, while the decline in the volume density in Yunnan and Tibet will lead to slow growth in volume. Forests in all provinces play a key role in carbon sequestration, with the advantages of carbon sequestration being more prominent in the southern forest region, and especially in Shanghai and Jiangsu. The carbon sequestration capacity for the three provinces in the southwest forest region is at a relatively slow development level.【Conclusion】To improve forest land use efficiency, the government should increase investment and continue to implement the Grain-to-Green Program, while improving the compensation standard and the time limit. Afforestation and reforestation projects and fast-growing forest projects should continue to be actively developed in key areas, to give full play to the advantages of rapid growth of plantations and a stable increase in the carbon sink capacity over longer time scales. For natural forests with an unsuitable age structure, sustainable management should be undertaken to artificially promote the regeneration ability of over-mature forests to improve the decline in volume density and encourage forestry to maximize its carbon sequestration potential.

关键词

林地利用效率 / 森林资源 / 价值属性 / 林区 / 碳汇

Key words

forest land use efficiency / forest resource / valuable attributes / forest region / carbon sink

引用本文

导出引用
许恩银, 聂影, 芮晓东. 基于森林资源清查数据的林地利用效率变化研究[J]. 南京林业大学学报(自然科学版). 2022, 46(5): 213-220 https://doi.org/10.12302/j.issn.1000-2006.202103017
XU Enyin, NIE Ying, RUI Xiaodong. Analysis on the forest land use efficiency changes based on forest resource inventory data[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(5): 213-220 https://doi.org/10.12302/j.issn.1000-2006.202103017
中图分类号: S718;S757   

参考文献

[1]
YU B B. Industrial structure, technological innovation, and total-factor energy efficiency in China[J]. Environ Sci Pollut Res, 2020, 27(8): 8371-8385. DOI:10.1007/s11356-019-07363-5.
[2]
DONG Y, JIN G, DENG X Z. Dynamic interactive effects of urban land-use efficiency, industrial transformation, and carbon emissions[J]. J Clean Prod, 2020, 270:122547. DOI:10.1016/j.jclepro.2020.122547.
[3]
YANG H R, ZHENG H, LIU H G, et al. NonLinear effects of environmental regulation on eco-efficiency under the constraint of land use carbon emissions: evidence based on a bootstrapping approach and panel threshold model[J]. Int J Environ Res Public Health, 2019, 16(10): 1679. DOI:10.3390/ijerph16101679.
[4]
张大伟, 胡长群, 何怀江, 等. 吉林省辽河流域土地利用类型演变过程研究[J]. 森林工程, 2020, 36(5): 45-53, 61.
ZHANG D W, HU C Q, HE H J, et al. Study on the evolution process of land use types in Liaohe River basin of Jilin Province[J]. Forest Engineering, 2020, 36(5): 45-53, 61. DOI:10.16270/j.cnki.slgc.2020.05.007.
[5]
GRASSI G, HOUSE J, DENTENER F, et al. The key role of forests in meeting climate targets requires science for credible mitigation[J]. Nat Clim Change, 2017, 7(3): 220-226. DOI:10.1038/nclimate3227.
[6]
IPCC. Climate change 2013: the physical science basis[M]. Cambridge: Cambridge University Press, 2013. DOI:10.1007/BF00524943.
[7]
VAN DEN HOEK J, OZDOGAN M, BURNICKI A, et al. Evaluating forest policy implementation effectiveness with a cross-scale remote sensing analysis in a priority conservation area of Southwest China[J]. Appl Geogr, 2014, 47: 177-189. DOI:10.1016/j.apgeog.2013.12.010.
[8]
HE Y F, XIE H L, FAN Y H, et al. Forested land use efficiency in China: spatiotemporal patterns and influencing factors from 1999 to 2010[J]. Sustainability, 2016, 8(8): 772. DOI:10.3390/su8080772.
[9]
LI L C, LIU J L, CHENG B D, et al. Effects of economic globalization and trade on forest transitions: evidence from 76 developing countries[J]. For Chron, 2017, 93(2): 171-179. DOI:10.5558/tfc2017-023.
[10]
LI L C, CHHATRE A, LIU J L. Multiple drivers and pathways to China's forest transition[J]. For Policy Econ, 2019, 106: 101962. DOI:10.1016/j.forpol.2019.101962.
[11]
KASTNER T, ERB K H, NONHEBEL S. International wood trade and forest change: a global analysis[J]. Glob Environ Change, 2011, 21(3): 947-956. DOI:10.1016/j.gloenvcha.2011.05.003.
[12]
LI L C, LIU J L, LONG H X, et al. Economic globalization, trade and forest transition: the case of nine Asian countries[J]. For Policy Econ, 2017, 76: 7-13. DOI:10.1016/j.forpol.2015.12.006.
[13]
刘珉. 森林资源变动及其影响因素研究[J]. 林业经济, 2014, 37(1): 80-86.
LIU M. Study on fluctuation and influencing factors of forest resources[J]. For Econ, 2014, 37(1): 80-86. DOI:10.13843/j.cnki.lyjj.2014.01.011.
[14]
FENG J G, WANG J S, YAO S C, et al. Dynamic assessment of forest resources quality at the provincial level using AHP and cluster analysis[J]. Comput Electron Agric, 2016, 124: 184-193. DOI:10.1016/j.compag.2016.04.007.
[15]
许恩银, 王维枫, 聂影, 等. 中国林业碳贡献区域分布及潜力预测[J]. 中国人口·资源与环境, 2020, 30(5): 36-45.
XU E Y, WANG W F, NIE Y, et al. Regional distribution and potential forecast of China's forestry carbon contributions[J]. China Popul Resour Environ, 2020, 30(5): 36-45. DOI:10.12062/cpre.20200105.
[16]
朱坤, 彭建松, 张文莉, 等. 曲靖市森林生态系统固碳释氧的生态效益[J]. 森林工程, 2022, 38(2): 34-43.
ZHU K, PENG J S, ZHANG W L, et al. Ecological benefits and value evaluation of carbon fixation and oxygen release in Qujing City[J]. Forest Engineering, 2022, 38(2): 34-43. DOI:10.16270/j.cnki.slgc.2022.02.002.
[17]
FANG J Y, GUO Z D, HU H F, et al. Forest biomass carbon sinks in East Asia, with special reference to the relative contributions of forest expansion and forest growth[J]. Glob Change Biol, 2014, 20(6): 2019-2030. DOI:10.1111/gcb.12512.
[18]
LI P, ZHU J, HU H F, et al. The relative contributions of forest growth and areal expansion to forest biomass carbon[J]. Biogeosciences, 2016, 13(2): 375-388. DOI:10.5194/bg-13-375-2016.
[19]
KÖHL M, LASCO R, CIFUENTES M, et al. Changes in forest production, biomass and carbon: results from the 2015 UN FAO global forest resource assessment[J]. For Ecol Manag, 2015, 352: 21-34. DOI:10.1016/j.foreco.2015.05.036.
[20]
张春华, 王莉媛, 宋茜薇, 等. 1973-2013年黑龙江省森林碳储量及其动态变化[J]. 中国环境科学, 2018, 38(12): 4678-4686.
ZHANG C H, WANG L Y, SONG Q W, et al. Biomass carbon stocks and dynamics of forests in Heilongjiang Province from 1973 to 2013[J]. China Environ Sci, 2018, 38(12): 4678-4686. DOI:10.19674/j.cnki.issn1000-6923.2018.0528.
[21]
KAUPPI P E, AUSUBEL J H, FANG J Y, et al. Returning forests analyzed with the forest identity[J]. PNAS, 2006, 103(46): 17574-17579. DOI:www.pnas.org/cgi/doi/10.1073/pnas.0608343103
[22]
WAGGONER P E. Using the Forest Identity to grasp and comprehend the swelling mass of forest statistics[J]. Int For Rev, 2008, 10(4): 689-694. DOI:10.1505/ifor.10.4.689.
[23]
MARCOS-MARTINEZ R M, BRYAN B A, SCHWABE K A, et al. Forest transition in developed agricultural regions needs efficient regulatory policy[J]. For Policy Econ, 2018, 86: 67-75. DOI:10.1016/j.forpol.2017.10.021.
[24]
CRESPO CUARESMA J C, DANYLO O, FRITZ S, et al. Economic development and forest cover: evidence from satellite data[J]. Sci Rep, 2017, 7: 40678. DOI:10.1038/srep40678.
[25]
董玮, 田淑英, 刘浩. 林业生态经济发展多维度公共政策选择与测度[J]. 中国人口·资源与环境, 2017, 27(11): 149-158.
DONG W, TIAN S Y, LIU H. Choices of public policies for forestry ecological economy development and the multi-dimensional measurements[J]. China Popul Resour Environ, 2017, 27(11): 149-158. DOI:10.12062/cpre.20170355.
[26]
刘璨, 帅忠义, 李琪, 等. 江西省铜鼓县全面禁止天然林商业性采伐经验问题及对策[J]. 林业经济, 2019, 41(5): 55-59.
LIU C, SHUAI Z Y, LI Q, et al. The issues and new policy measures on commercial logging ban on natural forests in Tonggu County of Jiangxi Province[J]. For Econ, 2019, 41(5): 55-59. DOI:10.13843/j.cnki.lyjj.2019.05.011.
[27]
SHI L, ZHAO S Q, TANG Z Y, et al. The changes in China's forests: an analysis using the forest identity[J]. PLoS One, 2011, 6(6): e20778. DOI:10.1371/journal.pone.0020778.
[28]
PAN Y D, LUO T X, BIRDSEY R, et al. New estimates of carbon storage and sequestration in China's forests: effects of age-class and method on inventory-based carbon estimation[J]. Clim Change, 2004, 67(2/3): 211-236. DOI:10.1007/s10584-004-2799-5.
[29]
FANG J Y, CHEN A P, PENG C H, et al. Changes in forest biomass carbon storage in China between 1949 and 1998[J]. Science, 2001, 292(5525): 2320-2322. DOI:10.1126/science.1058629.
[30]
FANG J Y, GUO Z D, PIAO S L, et al. Terrestrial vegetation carbon sinks in China, 1981-2000[J]. Sci China Ser D, 2007, 50(9): 1341-1350. DOI:10.1007/s11430-007-0049-1.
[31]
FANG J Y, WANG G G, LIU G H, et al. Forest biomass of China: an estimate based on the biomass-volume relationship[J]. Ecol Appl, 1998, 8(4): 1084-1091. DOI:10.1890/1051-0761(1998)008[1084:FBOCAE]2.0.CO;2.
[32]
严如贺, 柯水发. 经济林种植对人工林木材供给能力的影响: 抑制还是促进?--基于南方12省份森林资源清查面板数据[J]. 中国农村经济, 2019(5): 38-53.
YAN R H, KE S F. The impact of cultivation of tree crops on timber supply capacity of planted forests: inhibition or promotion? an analysis based on forest inventory panel data in 12 provinces of south China[J]. Chin Rural Econ, 2019(5): 38-53.
[33]
李奇, 朱建华, 范立红, 等. 西南地区乔木林碳储量及木材生产潜力预测[J]. 生态环境学报, 2018, 27(3): 416-423.
LI Q, ZHU J H, FAN L H, et al. Prediction of forest carbon storage and timber yield potential in southwestern China[J]. Ecol Environ Sci, 2018, 27(3): 416-423. DOI:10.16258/j.cnki.1674-5906.2018.03.003.
[34]
PAN Y D, BIRDSEY R A, FANG J Y, et al. A large and persistent carbon sink in the world's forests[J]. Science, 2011, 333(6045): 988-993. DOI:10.1126/science.1201609.
[35]
WOODBURY P B, SMITH J E, HEATH L S. Carbon sequestration in the US. forest sector from 1990 to 2010[J]. For Ecol Manag, 2007, 241(1/2/3): 14-27. DOI:10.1016/j.foreco.2006.12.008.
[36]
COSTANZA R, D'ARGE R, DE GROOT R, et al. The value of the world's ecosystem services and natural capital[J]. Ecol Econ, 1998, 25(1):3-15. DOI:10.1016/S0921-8009(98)00020-2.
[37]
谢高地, 甄霖, 鲁春霞, 等. 一个基于专家知识的生态系统服务价值化方法[J]. 自然资源学报, 2008, 23(5): 911-919.
XIE G D, ZHEN L, LU C X, et al. Expert knowledge based valuation method of ecosystem services in China[J]. J Nat Resour, 2008, 23(5): 911-919. DOI:10.11849/zrzyxb.2008.05.019.
[38]
XIE G D, ZHANG C X, ZHEN L, et al. Dynamic changes in the value of China's ecosystem services[J]. Ecosyst Serv, 2017, 26: 146-154. DOI:10.1016/j.ecoser.2017.06.010.
[39]
方精云, 陈安平, 赵淑清, 等. 中国森林生物量的估算: 对Fang等Science一文(Science, 2001, 291: 2320-2322)的若干说明[J]. 植物生态学报, 2002, 26(2): 243-249.
FANG J Y, CHEN A P, ZHAO S Q, et al. Estimating biomass carbon of China's forests: supplementary notes on report published in Science (291: 2320-2322) by Fang et al. (2001)[J]. Acta Phytoecol Sin, 2002, 26(2): 243-249.

基金

江苏高校哲学社会科学研究项目(2019SJA0475)

编辑: 李燕文
PDF(1669 KB)

Accesses

Citation

Detail

段落导航
相关文章

/