南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (6): 187-194.doi: 10.12302/j.issn.1000-2006.202206017
所属专题: 南京林业大学120周年校庆特刊
林杰1(), 张相2, 姜姜1, 蒯杰1, 郭赓1, 孟苗婧1, 李肖3
收稿日期:
2022-06-13
修回日期:
2022-07-12
出版日期:
2022-11-30
发布日期:
2022-11-24
基金资助:
LIN Jie1(), ZHANG Xiang2, JIANG Jiang1, KUAI Jie1, GUO Geng1, MENG Miaojing1, LI Xiao3
Received:
2022-06-13
Revised:
2022-07-12
Online:
2022-11-30
Published:
2022-11-24
摘要:
水力侵蚀(水蚀)是土壤侵蚀研究的焦点和热点领域,研究水蚀作用下侵蚀与沉积过程中土壤有机碳的动态变化对于评估土壤碳的“源/汇”效应具有重要意义。笔者总结了水蚀过程中土壤碳循环的研究现状,从侵蚀过程中土壤有机碳流失的定量研究、有机碳迁移与再分配以及有机碳矿化的影响等3个方面明确了土壤水蚀过程中土壤有机碳动态,并对国内外土壤水蚀过程中的有机碳主要研究成果进行了对比分析。建议未来研究中先对水蚀过程中有机碳的破坏、搬运和沉积等全过程进行精准解析和量化,在此基础上揭示其物理、化学及生物等共同作用下碳矿化特征的响应机制,全面探究水蚀过程中土壤碳收支的动态,量化土壤侵蚀对全球土壤碳循环的贡献率。
中图分类号:
林杰,张相,姜姜,等. 水力侵蚀过程中土壤有机碳循环研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 187-194.
LIN Jie, ZHANG Xiang, JIANG Jiang, KUAI Jie, GUO Geng, MENG Miaojing, LI Xiao. A review on the soil organic carbon cycling under water erosion[J].Journal of Nanjing Forestry University (Natural Science Edition), 2022, 46(6): 187-194.DOI: 10.12302/j.issn.1000-2006.202206017.
[1] | WANG Y X, RAN L S, FANG N F, et al. Aggregate stability and associated organic carbon and nitrogen as affected by soil erosion and vegetation rehabilitation on the Loess Plateau[J]. CATENA, 2018, 167:257-265.DOI:10.1016/j.catena.2018.05.005. |
[2] | LAL R. Soil degradation by erosion[J]. Land Degrad Dev, 2001, 12(6):519-539.DOI:10.1002/ldr.472. |
[3] | 史志华, 杨洁, 李忠武, 等. 南方红壤低山丘陵区水土流失综合治理[J]. 水土保持学报, 2018, 32(1):6-9. |
SHI Z H, YANG J, LI Z W, et al. Soil conservation in the hilly red soil region of southern China[J]. J Soil and Water Conserv, 2018, 32(1):6-9. DOI:10.13870/j.cnki.stbcxb.2018.01.002. | |
[4] | 聂小东. 水力侵蚀对红壤丘陵区土壤有机碳迁移分布及稳定机制的影响[D]. 长沙: 湖南大学, 2017. |
NIE X D. Effects of water erosion on the mechanisms of soil organic carbon migration,redistribution and stability in the red soil hilly region[D]. Changsha: Hunan University, 2017. | |
[5] | 史志华, 刘前进, 张含玉, 等. 近十年土壤侵蚀与水土保持研究进展与展望[J]. 土壤学报, 2020, 57(5):1117-1127. |
SHI Z H, LIU Q J, ZHANG H Y, et al. Study on soil erosion and conservation in the past 10 years: progress and prospects[J]. Acta Pedologica Sinica, 2020, 57(5):1117-1127. DOI:10.11766/trxb202002240070. | |
[6] | LAL R. Soil carbon sequestration impacts on global climate change and food security[J]. Science, 2004, 304(5677):1623-1627.DOI:10.1126/science.1097396. |
[7] | XIAO H B, LI Z W, CHANG X F, et al. The mineralization and sequestration of organic carbon in relation to agricultural soil erosion[J]. Geoderma, 2018, 329:73-81.DOI:10.1016/j.geoderma.2018.05.018. |
[8] | BERHE A A, HARTE J, HARDEN J W, et al. The significance of the erosion-induced terrestrial carbon sink[J]. BioScience, 2007, 57(4):337-346.DOI:10.1641/B570408. |
[9] | VAN OOST K, QUINE T A, GOVERS G, et al. The impact of agricultural soil erosion on the global carbon cycle[J]. Science, 2007, 318(5850):626-629.DOI:10.1126/science.1145724. |
[10] | FOUCHÉ J, KELLER C, ALLARD M, et al. Diurnal evolution of the temperature sensitivity of CO2 efflux in permafrost soils under control and warm conditions[J]. Sci Total Environ, 2017, 581/582:161-173.DOI:10.1016/j.scitotenv.2016.12.089. |
[11] | LAL R. Sequestering carbon in soils of agro-ecosystems[J]. Food Policy, 2011, 36:S33-S39.DOI:10.1016/j.foodpol.2010.12.001. |
[12] | COX P M, BETTS R A, JONES C D, et al. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model[J]. Nature, 2000, 408(6809):184-187.DOI:10.1038/35041539. |
[13] | DE NIJS E A, CAMMERAAT E L H. The stability and fate of soil organic carbon during the transport phase of soil erosion[J]. Earth Sci Rev, 2020, 201:103067.DOI:10.1016/j.earscirev.2019.103067. |
[14] | MELILLO J M, STEUDLER P A, ABER J D, et al. Soil warming and carbon-cycle feedbacks to the climate system[J]. Science, 2002, 298(5601):2173-2176.DOI:10.1126/science.1074153. |
[15] | GUO G, LI X, ZHU X, et al. Effect of forest management operations on aggregate-associated SOC dynamics using a 137Cs tracing method[J]. Forests, 2021, 12(7):859.DOI:10.3390/f12070859. |
[16] | LAL R, PIMENTEL D. Soil erosion: a carbon sink or source?[J]. Science, 2008, 319(5866):1040.DOI:10.1126/science.319.5866.1040 |
[17] | HARDEN J W, BERHE A A, TORN M, et al. Soil erosion: data say C sink[J]. Science, 2008, 320(5873):178-179.DOI:10.1126/science.320.5873.178. |
[18] | LAL R. Accelerated soil erosion as a source of atmospheric CO2[J]. Soil Tillage Res, 2019, 188:35-40.DOI:10.1016/j.still.2018.02.001. |
[19] | SHI P, VAN OOST K, SCHULIN R. Dynamics of soil fragment size distribution under successive rainfalls and its implication to size-selective sediment transport and deposition[J]. Geoderma, 2017, 308:104-111.DOI:10.1016/j.geoderma.2017.08.038. |
[20] | MONTGOMERY D R. Soil erosion and agricultural sustainability[J]. Proc Nat Acad Sci USA, 2007, 104(33):13268-13272.DOI:10.1073/pnas.0611508104. |
[21] | 田培, 仇浩然, 冯宇, 等. 雨强和坡度对红壤坡面产流产沙及侵蚀动力过程影响[J]. 水土保持研究, 2020, 27(6):1-8. |
TIAN P, QIU H R, FENG Y, et al. Effects of rainfall intensity and slope gradient on runoff and sediment production and erosion dynamic process on red soil slope[J]. Res Soil Water Conserv, 2020, 27(6):1-8.DOI:10.13869/j.cnki.rswc.20200611.001. | |
[22] | 徐振剑, 权鑫, 史红伟, 等. 黄土坡面侵蚀过程与侵蚀-沉积空间分布特征[J]. 陕西师范大学学报(自然科学版), 2021, 49(6):98-105. |
XU Z J, QUAN X, SHI H W, et al. Erosion process and spatial distribution characteristics of erosion-deposition on the loess slope[J]. J Shaanxi Norm Univ (Nat Sci Ed),2021, 49(6):98-105.DOI:10.15983/j.cnki.jsnu.2021.04.022. | |
[23] | DU L L, WANG R, GAO X, et al. Divergent responses of soil bacterial communities in erosion-deposition plots on the Loess Plateau[J]. Geoderma, 2020, 358:113995.DOI:10.1016/j.geoderma.2019.113995. |
[24] | LI Z W, XIAO H B, TANG Z H, et al. Microbial responses to erosion-induced soil physico-chemical property changes in the hilly red soil region of southern China[J]. Eur J Soil Biol, 2015, 71:37-44.DOI:10.1016/j.ejsobi.2015.10.003. |
[25] | GAO X D, WU P T, ZHAO X N, et al. Soil moisture variability along transects over a well-developed gully in the Loess Plateau,China[J]. Catena, 2011, 87(3):357-367.DOI:10.1016/j.catena.2011.07.004. |
[26] | 甘艺贤, 戴全厚, 伏文兵, 等. 基于模拟降雨试验的喀斯特坡耕地土壤侵蚀特征[J]. 应用生态学报, 2016, 27(9):2754-2760. |
GAN Y X, DAI Q H, FU W B, et al. Characteristics of soil erosion on Karst slopes under artificial rainfall experiment conditions[J]. Chin J Appl Ecol, 2016, 27(9):2754-2760.DOI:10.13287/j.1001-9332.201609.025. | |
[27] | 徐向舟, 刘大庆, 张红武, 等. 室内人工模拟降雨试验研究[J]. 北京林业大学学报, 2006, 28(5):52-58. |
XU X Z, LIU D Q, ZHANG H W, et al. Laboratory rainfall simulation with controlled rainfall intensity and drainage[J]. J Beijing For Univ, 2006, 28(5):52-58.DOI:10.3321/j.issn:1000-1522.2006.05.009. | |
[28] | 陈洪松, 邵明安, 张兴昌, 等. 野外模拟降雨条件下坡面降雨入渗、产流试验研究[J]. 水土保持学报, 2005, 19(2):5-8. |
CHEN H S, SHAO M A, ZHANG X C, et al. Field experiment on hillslope rainfall infiltration and runoff under simulated rainfall conditions[J]. J Soil Water Conserv, 2005, 19(2):5-8.DOI:10.13870/j.cnki.stbcxb.2005.02.002. | |
[29] | EL KATEB H, ZHANG H F, ZHANG P C, et al. Soil erosion and surface runoff on different vegetation covers and slope gradients: a field experiment in southern Shaanxi Province,China[J]. CATENA, 2013, 105:1-10.DOI:10.1016/j.catena.2012.12.012. |
[30] | WANG X, YOO K, MUDD S M, et al. Storage and export of soil carbon and mineral surface area along an erosional gradient in the Sierra Nevada,California[J]. Geoderma, 2018, 321:151-163.DOI:10.1016/j.geoderma.2018.02.008. |
[31] | YUE Y, NI J R, CIAIS P, et al. Lateral transport of soil carbon and land-atmosphere CO2 flux induced by water erosion in China[J]. PNAS, 2016, 113(24):6617-6622.DOI:10.1073/pnas.1523358113. |
[32] | LAL R, GRIFFIN M, APT J, et al. Managing soil carbon[J]. Science, 2004, 304(5669):393.DOI:10.1126/science.1093079. |
[33] | SMITH S V, RENWICK W H, BUDDEMEIER R W, et al. Budgets of soil erosion and deposition for sediments and sedimentary organic carbon across the conterminous United States[J]. Global Biogeochem Cycles, 2001, 15(3):697-707.DOI:10.1029/2000gb001341. |
[34] | LIU S G, BLISS N, SUNDQUIST E, et al. Modeling carbon dynamics in vegetation and soil under the impact of soil erosion and deposition[J]. Glob Biogeochem Cycles, 2003, 17:1017. DOI:10.1029/2002GB002010. |
[35] | QIU L P, ZHU H S, LIU J, et al. Soil erosion significantly reduces organic carbon and nitrogen mineralization in a simulated experiment[J]. Agric Ecosyst Environ, 2021, 307:107232.DOI:10.1016/j.agee.2020.107232. |
[36] | THALER E A, LARSEN I J, YU Q. The extent of soil loss across the US Corn Belt[J]. Proc Nat Acad Sci USA, 2021, 118(8):e1922375118.DOI:10.1073/pnas.1922375118. |
[37] | DOETTERL S, BERHE A A, NADEU E, et al. Erosion,deposition and soil carbon: a review of process-level controls,experimental tools and models to address C cycling in dynamic landscapes[J]. Earth Sci Rev, 2016, 154:102-122.DOI:10.1016/j.earscirev.2015.12.005. |
[38] | HARDEN J W, BERHE A A, TORN M, et al. Soil erosion: data say C sink[J]. Science, 2008, 320(5873):178-179.DOI:10.1126/science.320.5873.178. |
[39] | LAL R. Soil erosion and the global carbon budget[J]. Environ Int, 2003, 29(4):437-450.DOI:10.1016/S0160-4120(02)00192-7. |
[40] | STALLARD R F. Terrestrial sedimentation and the carbon cycle: coupling weathering and erosion to carbon burial[J]. Global Biogeochem Cycles, 1998, 12(2):231-257.DOI:10.1029/98gb00741. |
[41] | AN J, LIU Q J. Soil aggregate breakdown in response to wetting rate during the inter-rill and rill stages of erosion in a contour ridge system[J]. Catena, 2017, 157:241-249.DOI:10.1016/j.catena.2017.05.027. |
[42] | CUI L L, LI X, LIN J, et al. The mineralization and sequestration of soil organic carbon in relation to gully erosion[J]. Catena, 2022, 214:106218.DOI:10.1016/j.catena.2022.106218. |
[43] | 杨维鸽, 郑粉莉, 王占礼, 等. 地形对黑土区典型坡面侵蚀-沉积空间分布特征的影响[J]. 土壤学报, 2016, 53(3):572-581. |
YANG W G, ZHENG F L, WANG Z L, et al. Effects of topography on spatial distribution of soil erosion and deposition on hillslope in the typical of black soil region[J]. Acta Pedol Sin, 2016, 53(3):572-581.DOI:10.11766/trxb201508240314. | |
[44] | VAN OOST K, GOVERS G, VAN MUYSEN W. A process-based conversion model for caesium-137 derived erosion rates on agricultural land: an integrated spatial approach[J]. Earth Surf Process Landforms, 2003, 28(2):187-207.DOI:10.1002/esp.446. |
[45] | VAN OOST K, BEUSELINCK L, HAIRSINE P B, et al. Spatial evaluation of a multi-class sediment transport and deposition model[J]. Earth Surf Process Landforms, 2004, 29(8):1027-1044.DOI:10.1002/esp.1089. |
[46] | 方华军, 杨学明, 张晓平, 等. 土壤侵蚀对农田中土壤有机碳的影响[J]. 地理科学进展, 2004, 23(2):77-87. |
FANG H J, YANG X M, ZHANG X P, et al. Effect of soil erosion on soil organic carbon in cropland landscape[J]. Prog Geogr, 2004, 23(2):77-87. | |
[47] | 方华军, 杨学明, 张晓平, 等. 黑土坡耕地侵蚀和沉积对物理性组分有机碳积累与损耗的影响[J]. 土壤学报, 2007, 44(3):467-474. |
FANG H J, YANG X M, ZHANG X P, et al. Effects of soil erosion and deposition on loss and accumulation of soil organic carbon in physical fractions[J]. Acta Pedol Sin, 2007, 44(3):467-474.DOI:10.3321/j.issn:0564-3929.2007.03.013. | |
[48] | 方海燕, 吴丹瑞. 黑土区农田防护林带对小流域土壤侵蚀和泥沙沉积的影响[J]. 陕西师范大学学报(自然科学版), 2018, 46(1):104-110. |
FANG H Y, WU D R. Impact of agricultural shelterbelt on soil erosion and sediment deposition at catchment scale in the black soil region,northeastern China[J]. J Shaanxi Norm Univ (Nat Sci Ed),2018, 46(1):104-110.DOI:10.15983/j.cnki.jsnu.2018.01.412. | |
[49] | 魏守才. 水土流失对黑土坡耕地土壤有机碳的影响[D]. 哈尔滨: 中国科学院研究生院东北地理与农业生态研究所, 2015. |
WEI S C. Effect of soil erosion on soil organic carbon on sloping field of black soil area in northeast China[D]. Harbin:Northeast Institute of Geography and Agroecology,Chinese Academy of Sciences, 2015. | |
[50] | 方华军, 杨学明, 张晓平, 等. 坡耕地土壤有机碳再分布特征及其迁移累积平衡[J]. 核农学报, 2005, 19(3):202-207. |
FANG H J, YANG X M, ZHANG X P, et al. Soil organic carbon redistribution and budget of erosion and deposition in a sloping field[J]. Acta Agric Nucleatae Sin, 2005, 19(3):202-207.DOI:10.3969/j.issn.1000-8551.2005.03.010. | |
[51] | 周咪, 肖海兵, 聂小东, 等. 近30年国内外土壤有机碳研究进程解析与展望[J]. 水土保持研究, 2020, 27(3):391-400. |
ZHOU M, XIAO H B, NIE X D, et al. Analysis and prospect of soil organic carbon research process in recent 30 years at home and abroad[J]. Res Soil Water Conserv, 2020, 27(3):391-400.DOI:10.13869/j.cnki.rswc.2020.03.056. | |
[52] | 陈磊, 李占斌, 李鹏, 等. 野外模拟降雨条件下水土流失与养分流失耦合研究[J]. 应用基础与工程科学学报, 2011, 19(S1):170-176. |
CHEN L, LI Z B, LI P, et al. The coupling effect on soil erosion and nutrient lost under a simulated rainfall[J]. J Basic Sci Eng, 2011, 19(S1):170-176. | |
[53] | 张相, 李肖, 林杰, 等. 南方红壤丘陵区侵蚀沟道内土壤团聚体及有机碳特征[J]. 农业工程学报, 2020, 36(19):115-123. |
ZHANG X, LI X, LIN J, et al. Characteristics of soil aggregates and organic carbon in eroded gully in red soil region of Southern China[J]. Trans Chin Soc Agric Eng, 2020, 36(19):115-123. | |
[54] | 袁东海, 王兆骞, 郭新波, 等. 红壤小流域不同利用方式水土流失和有机碳流失特征研究[J]. 水土保持学报, 2002, 16(2):24-28. |
YUAN D H, WANG Z Q, GUO X B, et al. Properties of soil and water loss and organic carbon loss from small watershed under different land use patterns in red soil area[J]. J Soil Water Conserv, 2002, 16(2):24-28.DOI:10.13870/j.cnki.stbcxb.2002.02.007. | |
[55] | LAL R. Soil erosion and carbon dynamics[J]. Soil Tillage Res, 2005, 81(2):137-142.DOI:10.1016/j.still.2004.09.002. |
[56] | SIX J, PAUSTIAN K, ELLIOTT E T, et al. Soil structure and organic matter I.distribution of aggregate-size classes and aggregate-associated carbon[J]. Soil Sci Soc Am J, 2000, 64(2):681-689.DOI:10.2136/sssaj2000.642681x. |
[57] | WANG Y X, FANG N F, ZHANG F B, et al. Effects of erosion on the microaggregate organic carbon dynamics in a small catchment of the Loess Plateau,China[J]. Soil Tillage Res, 2017, 174:205-213.DOI:10.1016/j.still.2017.08.001. |
[58] | STALLARD R F. Terrestrial sedimentation and the carbon cycle: coupling weathering and erosion to carbon burial[J]. Global Biogeochem Cycles, 1998, 12(2):231-257.DOI:10.1029/98gb00741. |
[59] | 方华军, 杨学明, 张晓平, 等. 东北黑土区坡耕地表层土壤颗粒有机碳和团聚体结合碳的空间分布[J]. 生态学报, 2006, 26(9):2847-2854. |
FANG H J, YANG X M, ZHANG X P, et al. Spatial distribution of particulate organic carbon and aggregate associated carbon in topsoil of a sloping farmland in the black soil region,northeast China[J]. Acta Ecol Sin, 2006, 26(9):2847-2854. | |
[60] | DE ALBA S, LINDSTROM M, SCHUMACHER T E, et al. Soil landscape evolution due to soil redistribution by tillage: a new conceptual model of soil catena evolution in agricultural landscapes[J]. CATENA, 2004, 58(1):77-100.DOI:10.1016/j.catena.2003.12.004. |
[61] | 方华军, 杨学明, 张晓平, 等. 利用137Cs技术研究黑土坡耕地土壤再分布特征[J]. 应用生态学报, 2005, 16(3):464-468. |
FANG H J, YANG X M, ZHANG X P, et al. Redistribution patterns of black soil in hillslope landform of northeast China: a 137Cs study[J]. Chin J Appl Ecol, 2005, 16(3):464-468. | |
[62] | SEPULVEDA A, SCHULLER P, WALLING D E, et al. Use of 7Be to document soil erosion associated with a short period of extreme rainfall[J]. J Environ Radioact, 2008, 99(1):35-49.DOI:10.1016/j.jenvrad.2007.06.010. |
[63] | 陈晓芬, 刘明, 江春玉, 等. 不同施肥处理红壤性水稻土团聚体有机碳矿化特征[J]. 中国农业科学, 2018, 51(17):3325-3334. |
CHEN X F, LIU M, JIANG C Y, et al. Organic carbon mineralization in aggregate fractions of red paddy soil under different fertilization treatments[J]. Sci Agric Sin, 2018, 51(17):3325-3334. | |
[64] | 胡亚鲜, KUHN N J. 利用土壤颗粒的沉降粒级研究泥沙的迁移与分布规律[J]. 土壤学报, 2017, 54(5):1115-1124. |
HU Y X, KUHN N J. Using settling velocity to investigate the patterns of sediment transport and deposition[J]. Acta Pedol Sin, 2017, 54(5):1115-1124.DOI:10.11766/trxb201703100056. | |
[65] | XIAO H, LIU G, ZHANG Q, et al. Quantifying contributions of slaking and mechanical breakdown of soil aggregates to splash erosion for different soils from the Loess Plateau of China[J]. Soil Tillage Res, 2018, 178:150-158.DOI:10.1016/j.still.2017.12.026. |
[66] | NIE X D, LI Z W, HUANG J Q, et al. Thermal stability of organic carbon in soil aggregates as affected by soil erosion and deposition[J]. Soil Tillage Res, 2018, 175:82-90.DOI:10.1016/j.still.2017.08.010. |
[67] | 李志刚, 侯扶江. 黄土高原不同地形封育草地的土壤呼吸日动态与影响因子分析[J]. 草业学报, 2010, 19(1):42-49. |
LI Z G, HOU F J. Analysis of soil respiration diurnal dynamics and factors influencing it in enclosed natural grasslands under different topographies in the Loess Plateau[J]. Acta Prataculturae Sin, 2010, 19(1):42-49.DOI:10.11686/cyxb20100107. | |
[68] | 周焱, 徐宪根, 阮宏华, 等. 武夷山不同海拔高度土壤有机碳矿化速率的比较[J]. 生态学杂志, 2008, 27(11):1901-1907. |
ZHOU Y, XU X G, RUAN H H, et al. Mineralization rates of soil organic carbon along an elevation gradient in Wuyi Mountain of southeast China[J]. Chin J Ecol, 2008, 27(11):1901-1907. | |
[69] | 徐国鑫, 王子芳, 高明, 等. 秸秆与生物炭还田对土壤团聚体及固碳特征的影响[J]. 环境科学, 2018, 39(1):355-362. |
XU G X, WANG Z F, GAO M, et al. Effects of straw and biochar return in soil on soil aggregate and carbon sequestration[J]. Environ Sci, 2018, 39(1):355-362.DOI:10.13227/j.hjkx.201705217. | |
[70] | YU H Q, LI Y, OSHUNSANYA S O, et al. Re-introduction of light grazing reduces soil erosion and soil respiration in a converted grassland on the Loess Plateau,China[J]. Agric Ecosyst Environ, 2019, 280:43-52.DOI:10.1016/j.agee.2019.04.020. |
[71] | 杜兰兰. 侵蚀和沉积部位土壤呼吸变化特征及其影响因素[D]. 杨凌: 西北农林科技大学, 2017. |
DU L L. Investigation the variation of soil respiration and its influencing factors from eroding and depositional sites[D]. Yangling: Northwest A & F University, 2017. | |
[72] | 覃乾. 黄土丘陵区侵蚀坡面土壤有机碳稳定性研究[D]. 杨凌: 西北农林科技大学, 2019. |
QIN Q. Soil organic carbon stability on eroded slope land in the hilly loess plateau[D]. Yangling: Northwest A & F University, 2019. | |
[73] | 刘娇. 降雨侵蚀对土壤团聚体稳定性及碳氮矿化的影响[D]. 杨凌: 西北农林科技大学, 2018. |
LIU J. Effects of rainfall erosion on stability of soil aggregate and mineralizatin of organic catbon nad nitrogen[D]. Yangling: Northwest A & F University, 2018. | |
[74] | 李如剑. 土壤呼吸对侵蚀响应的模拟研究[D]. 杨凌: 西北农林科技大学, 2016. |
LI R J. Responses of soil respiration to soil erosion under simulation experiment[D]. Yangling: Northwest A & F University, 2016. | |
[75] | 张亚锋, 许明祥, 陈盖, 等. 黄土丘陵区水蚀坡面土壤有机碳矿化动态模拟[J]. 中国水土保持科学, 2016, 14(4):9-17. |
ZHANG Y F, XU M X, CHEN G, et al. Modelling the dynamics of soil organic carbon mineralization on water-eroded sloping land in the loess hilly region[J]. Sci Soil Water Conserv, 2016, 14(4):9-17.DOI:10.16843/j.sswc.2016.04.002. | |
[76] | YIN S, BAI J H, WANG W, et al. Effects of soil moisture on carbon mineralization in floodplain wetlands with different flooding frequencies[J]. J Hydrol, 2019, 574:1074-1084.DOI:10.1016/j.jhydrol.2019.05.007. |
[77] | HU Y X, KUHN N J. Erosion-induced exposure of SOC to mineralization in aggregated sediment[J]. CATENA, 2016, 137:517-525.DOI:10.1016/j.catena.2015.10.024. |
[78] | LI X J, XIE J S, ZHANG Q F, et al. Substrate availability and soil microbes drive temperature sensitivity of soil organic carbon mineralization to warming along an elevation gradient in subtropical Asia[J]. Geoderma, 2020, 364:114198.DOI:10.1016/j.geoderma.2020.114198. |
[79] | 史志华, 宋长青. 土壤水蚀过程研究回顾[J]. 水土保持学报, 2016, 30(5):1-10. |
SHI Z H, SONG C Q. Water erosion processes: a historical review[J]. J Soil Water Conserv, 2016, 30(5):1-10.DOI:10.13870/j.cnki.stbcxb.2016.05.001. | |
[80] | VAN OOST K, QUINE T A, GOVERS G, et al. The impact of agricultural soil erosion on the global carbon cycle[J]. Science, 2007, 318(5850):626-629.DOI:10.1126/science.1145724. |
[81] | 黄金权, 程冬兵, 王志刚, 等. 水力侵蚀作用下土壤有机碳动态研究进展[J]. 长江科学院院报, 2016, 33(12):27-32. |
HUANG J Q, CHENG D B, WANG Z G, et al. Advances in dynamics of soil organic carbon affected by water erosion[J]. J Yangtze River Sci Res Inst, 2016, 33(12):27-32.DOI:10.11988/ckyyb.20160337. |
[1] | 纪昕雨, 于悦, 张思帆, 刘媛媛. 基于CSLE模型的大连市果园土壤侵蚀特征研究[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 117-124. |
[2] | 杨瑞, 吴朝明, 朱骊, 胡海波. 苏南丘陵区坡面经济林土壤侵蚀特征[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 70-76. |
[3] | 张相, 丁鸣鸣, 林杰, 李卓远, 崔琳琳, 郭赓, 杨皓. 水蚀作用下红壤丘陵区土壤特性的空间分异特征[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 77-84. |
[4] | 于悦, 赵丽君, 张威, 张科利, 刘亮. 东北黑土区不同开垦年限坡耕地坡面土壤磁化率特征研究[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 51-60. |
[5] | 徐晨, 阮宏华, 吴小巧, 谢友超, 杨艳. 干旱影响森林土壤有机碳周转及积累的研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 195-206. |
[6] | 陈超, 齐斐, 徐雁南, 黎家作, 赵传普, 苏新宇. 基于空间自相关的县域尺度土壤侵蚀抽样方法研究[J]. 南京林业大学学报(自然科学版), 2022, 46(3): 177-184. |
[7] | 黄梓敬, 徐侠, 张惠光, 蔡斌, 李良彬. 根系输入对森林土壤碳库及碳循环的影响研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(1): 25-32. |
[8] | 郭亮, 丁九敏, 徐侠. 树干甲烷的研究进展[J]. 南京林业大学学报(自然科学版), 2021, 45(5): 235-241. |
[9] | 陈家新,杨红强. 全球森林及林产品碳科学研究进展与前瞻[J]. 南京林业大学学报(自然科学版), 2018, 42(04): 1-8. |
[10] | 陈茁新,张金池. 近10年全球水土保持研究热点问题述评[J]. 南京林业大学学报(自然科学版), 2018, 42(03): 167-174. |
[11] | 李平,王国兵,郑阿宝,沈玉娟,赵琦齐,王琳飞,蒋如生,李莉,阮宏华. 苏南丘陵区4种典型人工林土壤活性有机碳分布特征[J]. 南京林业大学学报(自然科学版), 2012, 36(04): 79-83. |
[12] | 王邵军,阮宏华. 全球变化背景下森林生态系统碳循环及其管理[J]. 南京林业大学学报(自然科学版), 2011, 35(02): 113-116. |
[13] | 孔维健,周本智*,傅懋毅,李正才,谢锦忠,吴明. 不同土地利用类型水土保持特征研究[J]. 南京林业大学学报(自然科学版), 2009, 33(04): 57-61. |
[14] | 徐天蜀;彭世揆;岳彩荣. 基于GIS的小流域土壤侵蚀评价研究[J]. 南京林业大学学报(自然科学版), 2002, 26(04): 43-46. |
[15] | 胡海波;项卫东. 长江中下游环境特征与洪灾的关系[J]. 南京林业大学学报(自然科学版), 1999, 23(02): 37-41. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||