干旱影响森林土壤有机碳周转及积累的研究进展

徐晨, 阮宏华, 吴小巧, 谢友超, 杨艳

南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (6) : 195-206.

PDF(6603 KB)
PDF(6603 KB)
南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (6) : 195-206. DOI: 10.12302/j.issn.1000-2006.202209015
特邀专论

干旱影响森林土壤有机碳周转及积累的研究进展

作者信息 +

Progresses in drought stress on the accumulation and turnover of soil organic carbon in forests

Author information +
文章历史 +

摘要

随着全球气候变暖趋势加剧,伴之而来的干旱问题成为全球关注的热点。干旱对森林生态系统碳积累和周转可能产生显著影响,其主要过程包括植被地上部分和地下部分凋落物对土壤有机碳的输入、凋落物的分解及土壤有机碳的矿化等。笔者综合分析了近年来国内外相关研究成果,对干旱影响森林土壤有机碳的主要过程与机制进行了归纳和总结,结果表明:①干旱通过促进叶片提前脱落,短期增加森林凋落物量,长期干旱则影响森林植物生长,降低森林初级生产力从而降低植物地上凋落物量。轻度和中度干旱下植物为补偿水分缺失增加细根生物量维持植物生命力,重度干旱下植物丧失自我修复能力导致细根生物量降低,干旱也会造成细根死亡率增加。平均而言,全球范围内干旱会造成森林凋落物量降低(1.9%)和细根生物量降低(8.7%),最终减少植物有机碳向土壤的输入量。②干旱可通过改变凋落物化学性质,对分解者——土壤动物、微生物产生胁迫,从而引起凋落物分解速率下降(10%~70%)。干旱使凋落物碳氮含量变化,造成凋落物次生代谢物,如纤维素、木质素、单宁等积累,改变根系分泌物化学组分,从而影响凋落物分解。干旱导致真菌生物量和分解者等土壤动物丰度降低,增加分解者捕食压力,使相关微生物和酶活性下降,造成凋落物分解速率下降。③干旱驱动微生物群落组成变化(真菌细菌比、革兰阳阴细菌比增加),造成微生物生物量下降,活性减弱,此外还会降低腐食动物的摄食活性、酶活性,最终导致土壤有机碳矿化速率下降(10%~50%)。④干旱对土壤有机碳不同组分影响不同,干旱会减小土壤微生物生物量碳(MBC)库(2%~30%),造成表层土壤溶解性有机碳(DOC)积累(30%~60%)。而在全球范围内的不同区域,干旱对土壤有机碳积累的影响也不同,亚热带森林中干旱对土壤有机碳积累的影响多是负面的,热带森林中则相反。总体而言,干旱对森林土壤有机碳库储量影响可能不大,但降低了土壤碳周转效率。而森林土壤有机碳周转过程不仅受干旱这一单一因素影响,温度、物种等因素会共同作用于土壤有机碳的周转与积累,且单因子的简单叠加模拟可能与现实环境中多因子综合对土壤碳通量的影响有一定差别。未来需要通过长期观测、延长控制实验时间、模拟原生环境条件等,开展多因素综合实验,加强干旱对土壤动物和微生物影响的研究,以深入了解干旱对森林土壤有机碳影响的生物学与生态学的过程与机制。

Abstract

With global warming, drought has become a serious issue in the world. Drought can significantly affect the soil carbon accumulation and transformation in forest ecosystems. Forest soil organic carbon (SOC) is the largest carbon pool in terrestrial ecosystems, and its dynamic changes significantly affect the global carbon cycle. Drought stress affects all processes of soil organic carbon dynamics, including the input of organic carbon from the above-ground and belowground litter and the transformation and decomposition of litter, and then causes changes in the soil carbon pool. Here, we reviewed the research progress of the effects of drought on soil organic carbon in forests. The results show that (1) short-term drought increases forest litterfall by promoting leaf shedding in advance, while long-term drought affects forest plant growth, reduces forest primary productivity, and thus decreases plant litterfall. To compensate for water loss, plants in mild and moderate drought increase fine root biomass to maintain plant vitality. In severe drought, plants lose self-repair ability, resulting in reduced fine root biomass and increased fine root mortality. On average, drought decreases forest litter (1.9%)and fine-root biomass(8.7%) worldwide, ultimately reducing the input of plant organic carbon to soil. (2) Drought can reduce the decomposition rate of litter(10% to 70%) by changing its chemical properties and stressing the soil animals and microorganisms responsible for its decomposition. Drought changes the carbon and nitrogen concentration of litters; causes accumulation of secondary metabolites such as cellulose, lignin and tannin; and changes the chemical components of root exudates, thus affecting the decomposition of litter. Moreover, drought results in the decrease of fungal biomass and abundance of soil fauna in decomposers, increases the predation pressure of decomposer animals, and decreases the activities of related microorganisms and enzymes, resulting in the decrease of litter decomposition rate.(3) Drought-driven changes in microbial community composition (the ratio of fungi to bacteria and of Gram-positive to Gram-negative-bacteria increased) result in the decrease of microbial biomass and activity, and drought reduces the feeding and enzyme activities of scavengers, which eventually lead to the decrease of soil organic carbon mineralization rate(10% to 50%).(4) The effects of drought on different components of soil organic carbon are different. Drought produces a smaller and more sensitive soil microbial biomass carbon (MBC) pool(2% to 30%), resulting in the accumulation of dissolved organic carbon (DOC) in surface soil(30%-60%). However, the effects of drought on SOC accumulation vary in different regions of the world. In subtropical forests, the effects of drought on SOC accumulation are mostly negative, while in tropical forests, the effects are positive. In general, drought may have little effect on the forest SOC pool, but reduces soil carbon turnover. Additionally, forest SOC turnover is not affected only by drought; temperature, species, and other factors work together in the turnover of SOC and accumulation. The simple superposition simulation may be single-or multi-factor in the real-world impact on soil carbon flux, which has certain differences. For example, the effect of increasing temperature and drought produce antagonism; the effect of their interaction on soil carbon input is lower than the superposition effect on soil carbon input, and the interaction effect of the two on soil carbon loss is not significant. We propose that it is important to conduct long-term observations, prolonging control experiment through simulating native environments and multi-factor comprehensive influence, to understand the effects of drought on the dynamic process and mechanism of soil organic carbon.

关键词

森林土壤 / 有机碳输入 / 地上凋落物 / 根系凋落物 / 土壤微生物 / 有机碳矿化 / 土壤呼吸

Key words

forest soil / organic carbon input / plant litter / root litter / soil microbes / organic carbon mineralization / soil respiration

引用本文

导出引用
徐晨, 阮宏华, 吴小巧, . 干旱影响森林土壤有机碳周转及积累的研究进展[J]. 南京林业大学学报(自然科学版). 2022, 46(6): 195-206 https://doi.org/10.12302/j.issn.1000-2006.202209015
XU Chen, RUAN Honghua, WU Xiaoqiao, et al. Progresses in drought stress on the accumulation and turnover of soil organic carbon in forests[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(6): 195-206 https://doi.org/10.12302/j.issn.1000-2006.202209015
中图分类号: S718.5   

参考文献

[1]
NAUMANN G, ALFIERI L, WYSER K, et al. Global changes in drought conditions under different levels of warming[J]. Geophys Res Lett, 2018, 45(7):3285-3296.DOI:10.1002/2017gl076521.
[2]
HARI V, RAKOVEC O, MARKONIS Y, et al. Increased future occurrences of the exceptional 2018-2019 Central European drought under global warming[J]. Sci Rep, 2020, 10:12207.DOI:10.1038/s41598-020-68872-9.
[3]
XU K, YANG D W, YANG H B, et al. Spatio-temporal variation of drought in China during 1961-2012:a climatic perspective[J]. J Hydrol, 2015, 526:253-264.DOI:10.1016/j.jhydrol.2014.09.047.
[4]
SCHLESINGER W H, DIETZE M C, JACKSON R B, et al. Forest biogeochemistry in response to drought[J]. Glob Change Biol, 2016, 22(7):2318-2328.DOI:10.1111/gcb.13105.
[5]
STOVALL A E L, SHUGART H, YANG X. Tree height explains mortality risk during an intense drought[J]. Nat Commun, 2019, 10:4385.DOI:10.1038/s41467-019-12380-6.
[6]
SCHIMEL J P. Life in dry soils: effects of drought on soil microbial communities and processes[J]. Annu Rev Ecol Evol Syst, 2018, 49:409-432.DOI:10.1146/annurev-ecolsys-110617-062614.
[7]
SCHMIDT M W I, TORN M S, ABIVEN S, et al. Persistence of soil organic matter as an ecosystem property[J]. Nature, 2011, 478(7367):49-56.DOI:10.1038/nature10386.
[8]
FRANK D, REICHSTEIN M, BAHN M, et al. Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts[J]. Glob Change Biol, 2015, 21(8). DOI: 10.1111/gcb.12916.
[9]
HOOVER D L, ROGERS B M. Not all droughts are created equal:the impacts of interannual drought pattern and magnitude on grassland carbon cycling[J]. Glob Change Biol, 2016, 22(5):1809-1820.DOI:10.1111/gcb.13161.
[10]
PAN Y D, BIRDSEY R A, PHILLIPS O L, et al. The structure,distribution,and biomass of the world’s forests[J]. Annu Rev Ecol Evol Syst, 2013, 44:593-622.DOI:10.1146/annurev-ecolsys-110512-135914.
[11]
杜雪, 王海燕. 中国森林土壤有机碳活性组分及其影响因素[J]. 世界林业研究, 2022, 35(1):76-81.
DU X, WANG H Y. Active components of forest soil organic carbon and its influencing factors in China[J]. World For Res, 2022, 35(1):76-81.DOI:10.13348/j.cnki.sjlyyj.2021.0068.y.
[12]
ANDEREGG W R L, SCHWALM C, BIONDI F, et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models[J]. Science, 2015, 349(6247):528-532.DOI:10.1126/science.aab1833.
[13]
STOCKMANN U, ADAMS M A, CRAWFORD J W, et al. The knowns,known unknowns and unknowns of sequestration of soil organic carbon[J]. Agric Ecosyst Environ, 2013, 164:80-99.DOI:10.1016/j.agee.2012.10.001.
[14]
COX P M, BETTS R A, JONES C D, et al. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model[J]. Nature, 2000, 408(6809):184-187.DOI:10.1038/35041539.
[15]
BELLAMY P H, LOVELAND P J, BRADLEY R I, et al. Carbon losses from all soils across England and Wales 1978-2003[J]. Nature, 2005, 437(7056):245-248.DOI:10.1038/nature04038.
[16]
马志良, 赵文强. 植物群落向土壤有机碳输入及其对气候变暖的响应研究进展[J]. 生态学杂志, 2020, 39(1):270-281.
MA Z L, ZHAO W Q. Research progress on input of plant community-derived soil organic carbon and its responses to climate warming[J]. Chin J Ecol, 2020, 39(1):270-281.DOI:10.13292/j.1000-4890.202001.009.
[17]
CORTEZ J, BOUCHÉ M B. Field decomposition of leaf litters:earthworm-microorganism interactions—the ploughing-in effect[J]. Soil Biol Biochem, 1998, 30(6):795-804.DOI:10.1016/S0038-0717(97)00164-8.
[18]
LI C, LIU L, ZHENG L, et al. Greater soil water and nitrogen availability increase C∶N ratios of root exudates in a temperate steppe[J]. Soil Biol Biochem, 2021, 161:108384.DOI:10.1016/j.soilbio.2021.108384.
[19]
DALLSTREAM C, PIPER F I. Drought promotes early leaf abscission regardless of leaf habit but increases litter phosphorus losses only in evergreens[J]. Aust J Bot, 2021, 69(3):121.DOI:10.1071/bt20052.
[20]
NIELSEN U N, BALL B A. Impacts of altered precipitation regimes on soil communities and biogeochemistry in arid and semi-arid ecosystems[J]. Glob Change Biol, 2015, 21(4):1407-1421.DOI:10.1111/gcb.12789.
[21]
杞金华, 章永江, 张一平, 等. 西南干旱对哀牢山常绿阔叶林凋落物及叶面积指数的影响[J]. 生态学报, 2013, 33(9):2877-2885.
QI J H, ZHANG Y J, ZHANG Y P, et al. The impacts of the Southwest China drought on the litterfall and leaf area index of an evergreen broadleaf forest on Ailao Mountain[J]. Acta Ecol Sin, 2013, 33(9):2877-2885.DOI: 10.5846/stxb201202080162.
[22]
MORAIS T M O, BERENGUER E, BARLOW J, et al. Leaf-litter production in human-modified Amazonian forests following the El Niño-mediated drought and fires of 2015-2016[J]. For Ecol Manag, 2021, 496:119441.DOI:10.1016/j.foreco.2021.119441.
[23]
DENG L, PENG C H, KIM D G, et al. Drought effects on soil carbon and nitrogen dynamics in global natural ecosystems[J]. Earth Sci Rev, 2021, 214:103501.DOI:10.1016/j.earscirev.2020.103501.
[24]
BARLOW J, GARDNER T A, FERREIRA L V, et al. Litter fall and decomposition in primary,secondary and plantation forests in the Brazilian Amazon[J]. For Ecol Manag, 2007, 247(1/2/3):91-97.DOI:10.1016/j.foreco.2007.04.017.
[25]
BRANDO P M, NEPSTAD D C, DAVIDSON E A, et al. Drought effects on litterfall,wood production and belowground carbon cycling in an Amazon forest:results of a throughfall reduction experiment[J]. Philos Trans R Soc Lond B Biol Sci, 2008, 363(1498):1839-1848.DOI:10.1098/rstb.2007.0031.
[26]
袁铭皎. 极端天气对天童常绿阔叶林凋落物量影响的初步研究[D]. 上海: 华东师范大学, 2016.
YUAN M J. Preliminary study on effects of extreme events on litter production in an evergreen broad-leaved forest in Tiantong,Zhejiang Province[D]. Shanghai: East China Normal University, 2016.
[27]
LEROY C J, WYMORE A S, DAVIS R, et al. Indirect influences of a major drought on leaf litter quality and decomposition in a southwestern stream[J]. Fal, 2014, 184(1):1-10.DOI:10.1127/1863-9135/2014/0505.
[28]
SUSEELA V, THARAYIL N. Decoupling the direct and indirect effects of climate on plant litter decomposition:accounting for stress-induced modifications in plant chemistry[J]. Glob Change Biol, 2018, 24(4):1428-1451.DOI:10.1111/gcb.13923.
[29]
JUANITA M G, BOIX D, DUARTE S, et al. Legacy of summer drought on autumnal leaf litter processing in a temporary mediterranean stream[J]. Ecosystems, 2020, 23(5):989-1003.DOI: 10.1007/s10021-019-00451-0.
[30]
THARAYIL N, SUSEELA V, TRIEBWASSER D J, et al. Changes in the structural composition and reactivity of Acer rubrum leaf litter tannins exposed to warming and altered precipitation:climatic stress-induced tannins are more reactive[J]. New Phytol, 2011, 191(1):132-145.DOI:10.1111/j.1469-8137.2011.03667.x.
[31]
GARCÍA-PALACIOS P, PRIETO I, OURCIVAL J M, et al. Disentangling the litter quality and soil microbial contribution to leaf and fine root litter decomposition responses to reduced rainfall[J]. Ecosystems, 2016, 19(3):490-503.DOI:10.1007/s10021-015-9946-x.
[32]
TRIEBWASSER-FREESE D J, THARAYIL N, PRESTON C M, et al. Catalytic kinetics and activation energy of soil peroxidases across ecosystems of differing lignin chemistries[J]. Biogeochemistry, 2015, 124(1):113-129.DOI:10.1007/s10533-015-0086-3.
[33]
NORTHUP R R, YU Z S, DAHLGREN R A, et al. Polyphenol control of nitrogen release from pine litter[J]. Nature, 1995, 377(6546):227-229.DOI:10.1038/377227a0.
[34]
ZHOU S X, HUANG C D, XIANG Y B, et al. Effects of reduced precipitation on litter decomposition in an evergreen broad-leaved forest in Western China[J]. For Ecol Manag, 2018, 430:219-227.DOI:10.1016/j.foreco.2018.08.022.
[35]
TSIAFOULI M A, MONOKROUSOS N, SGARDELIS S P. Drought in spring increases microbial carbon loss through respiration in a Mediterranean pine forest[J]. Soil Biol Biochem, 2018, 119:59-62.DOI:10.1016/j.soilbio.2018.01.010.
[36]
DENG Q, ZHANG D Q, HAN X, et al. Changing rainfall frequency rather than drought rapidly alters annual soil respiration in a tropical forest[J]. Soil Biol Biochem, 2018, 121:8-15.DOI:10.1016/j.soilbio.2018.02.023.
[37]
SOKOL N W, KUEBBING S E, KARLSEN-AYALA E, et al. Evidence for the primacy of living root inputs,not root or shoot litter,in forming soil organic carbon[J]. New Phytol, 2019, 221(1):233-246.DOI:10.1111/nph.15361.
[38]
CHAPIN F S Ⅲ, MATSON P A, VITOUSEK P M. Principles of terrestrial ecosystem ecology[M]. New York: Springer New York, 2011.DOI:10.1007/978-1-4419-9504-9.
[39]
JONES D L, NGUYEN C, FINLAY R D. Carbon flow in the rhizosphere:carbon trading at the soil-root interface[J]. Plant Soil, 2009, 321(1):5-33.DOI:10.1007/s11104-009-9925-0.
[40]
KOZLOWSKI T T, PALLARDY S G. Acclimation and adaptive responses of woody plants to environmental stresses[J]. Bot Rev,2002, 68(2):270-334.DOI:10.1663/0006-8101(2002)068[0270:aaarow]2.0.co;2.
[41]
ZANG U, GOISSER M, HÄBERLE K H, et al. Effects of drought stress on photosynthesis,rhizosphere respiration,and fine-root characteristics of beech saplings:a rhizotron field study[J]. Z Pflanzenernähr Bodenk, 2014, 177(2):168-177.DOI:10.1002/jpln.201300196.
[42]
LEUSCHNER C, HERTEL D. Fine root biomass of temperate forests in relation to soil acidity and fertility,climate,age and species[M]//Progress in Botany. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003:405-438.DOI:10.1007/978-3-642-55819-1_16.
[43]
EISSENSTAT D M, VOLDER A. The efficiency of nutrient acquisition over the life of a root[M]//Ecological Studies.Berlin, Heidelberg:Springer-Verlag, 2005:185-220.DOI:10.1007/3-540-27675-0_8.
[44]
BRYLA D R, BOUMA T J, EISSENSTAT D M. Root respiration in citrus acclimates to temperature and slows during drought[J]. Plant Cell Environ, 1997, 20(11):1411-1420.DOI:10.1046/j.1365-3040.1997.d01-36.x.
[45]
JAKOBY G, ROG I, MEGIDISH S, et al. Enhanced root exudation of mature broadleaf and conifer trees in a Mediterranean forest during the dry season[J]. Tree Physiol, 2020, 40(11):1595-1605.DOI:10.1093/treephys/tpaa092.
[46]
PREECE C, FARRÉ-ARMENGOL G, LLUSIÀ J, et al. Thirsty tree roots exude more carbon[J]. Tree Physiol, 2018, 38(5):690-695.DOI:10.1093/treephys/tpx163.
[47]
陆海波. 降水减少对暖温带锐齿栎林土壤碳循环关键过程的影响[D]. 北京: 中国林业科学研究院, 2017.
LU H B. Effects of throughfall reduction on the key processes of soil carbon cycle in warm-temperate oak forests[D]. Beijing: Chinese Academy of Forestry, 2017.
[48]
HOLZ M, ZAREBANADKOUKI M, KAESTNER A, et al. Rhizodeposition under drought is controlled by root growth rate and rhizosphere water content[J]. Plant Soil, 2018, 423(1):429-442.DOI:10.1007/s11104-017-3522-4.
[49]
GARGALLO-GARRIGA A, PREECE C, SARDANS J, et al. Root exudate metabolomes change under drought and show limited capacity for recovery[J]. Sci Rep, 2018, 8:12696.DOI:10.1038/s41598-018-30150-0.
[50]
ULRICH D E M, CLENDINEN C S, ALONGI F, et al. Root exudate composition reflects drought severity gradient in blue grama (Bouteloua gracilis)[J]. Sci Rep, 2022, 12(1):12581.DOI:10.1038/s41598-022-16408-8.
[51]
BRUNN M, HAFNER B D, ZWETSLOOT M J, et al. Carbon allocation to root exudates is maintained in mature temperate tree species under drought[J]. New Phytol, 2022, 235(3):965-977.DOI:10.1111/nph.18157.
[52]
HAN S H, KIM S, CHANG H N, et al. Increased soil temperature stimulates changes in carbon,nitrogen,and mass loss in the fine roots of Pinus koraiensis under experimental warming and drought[J]. Turk J Agric For, 2019, 43(1):80-87.DOI:10.3906/tar-1807-162.
[53]
ZHAO Q Z, GUO J, SHU M, et al. Impacts of drought and nitrogen enrichment on leaf nutrient resorption and root nutrient allocation in four Tibetan plant species[J]. Sci Total Environ, 2020, 723:138106.DOI:10.1016/j.scitotenv.2020.138106.
[54]
OLMO M, LOPEZ-IGLESIAS B, VILLAR R. Drought changes the structure and elemental composition of very fine roots in seedlings of ten woody tree species[J]. Plant Soil, 2014, 384(1):113-129.DOI:10.1007/s11104-014-2178-6.
[55]
MOSER G, SCHULDT B, HERTEL D, et al. Replicated throughfall exclusion experiment in an Indonesian perhumid rainforest:wood production,litter fall and fine root growth under simulated drought[J]. Glob Change Biol, 2014, 20(5):1481-1497.DOI:10.1111/gcb.12424.
[56]
GE X G, WANG C G, WANG L L, et al. Drought changes litter quantity and quality,and soil microbial activities to affect soil nutrients in moso bamboo forest[J]. Sci Total Environ, 2022, 838:156351.DOI:10.1016/j.scitotenv.2022.156351.
[57]
KEMP P R, REYNOLDS J F, VIRGINIA R A, et al. Decomposition of leaf and root litter of Chihuahuan desert shrubs:Effects of three years of summer drought[J]. J Arid Environ, 2003, 53(1):21-39.DOI:10.1006/jare.2002.1025.
[58]
SANAULLAH M, RUMPEL C, CHARRIER X, et al. How does drought stress influence the decomposition of plant litter with contrasting quality in a grassland ecosystem?[J]. Plant Soil, 2012, 352(1):277-288.DOI:10.1007/s11104-011-0995-4.
[59]
SANTONJA M, FERNANDEZ C, PROFFIT M, et al. Plant litter mixture partly mitigates the negative effects of extended drought on soil biota and litter decomposition in a Mediterranean oak forest[J]. J Ecol, 2017, 105(3):801-815.DOI:10.1111/1365-2745.12711.
[60]
WILLCOCK J, MAGAN N. Impact of environmental factors on fungal respiration and dry matter losses in wheat straw[J]. J Stored Prod Res, 2000, 37(1):35-45.DOI:10.1016/S0022-474X(00)00005-9.
[61]
WANG J, GE Y, CORNELISSEN J H C, et al. Litter nitrogen concentration changes mediate effects of drought and plant species richness on litter decomposition[J]. Oecologia, 2022, 198(2):507-518.DOI:10.1007/s00442-022-05105-y.
[62]
SANTONJA M, FERNANDEZ C, GAUQUELIN T, et al. Climate change effects on litter decomposition:intensive drought leads to a strong decrease of litter mixture interactions[J]. Plant Soil, 2015, 393(1):69-82.DOI:10.1007/s11104-015-2471-z.
[63]
ALLISON S D, LU Y, WEIHE C, et al. Microbial abundance and composition influence litter decomposition response to environmental change[J]. Ecology, 2013, 94(3):714-725.DOI:10.1890/12-1243.1.
[64]
刘利芳, 徐程扬. 影响森林细根分解的机理研究进展[J]. 山东林业科技, 2012, 42(3):97-105.
LIU L F, XU C Y. Advances in studying fine root decomposition in forest[J]. J Shandong For Sci Technol, 2012, 42(3):97-105.
[65]
HUANG C J, WU C S, GONG H D, et al. Decomposition of roots of different diameters in response to different drought periods in a subtropical evergreen broad-leaf forest in Ailao Mountain[J]. Glob Ecol Conserv, 2020, 24:e01236.DOI:10.1016/j.gecco.2020.e01236.
[66]
HERZOG C, HARTMANN M, FREY B, et al. Microbial succession on decomposing root litter in a drought-prone Scots pine forest[J]. ISME J, 2019, 13(9):2346-2362.DOI:10.1038/s41396-019-0436-6.
[67]
AMELUNG W, BOSSIO D, DE VRIES W, et al. Towards a global-scale soil climate mitigation strategy[J]. Nat Commun, 2020, 11:5427.DOI:10.1038/s41467-020-18887-7.
[68]
SINGH S, MAYES M A, SHEKOOFA A, et al. Soil organic carbon cycling in response to simulated soil moisture variation under field conditions[J]. Sci Rep, 2021, 11(1):10841.DOI:10.1038/s41598-021-90359-4.
[69]
WANG Q K, ZENG Z Q, ZHONG M C. Soil moisture alters the response of soil organic carbon mineralization to litter addition[J]. Ecosystems, 2016, 19(3):450-460.DOI:10.1007/s10021-015-9941-2.
[70]
BORKEN W, MATZNER E. Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils[J]. Glob Change Biol, 2009, 15(4):808-824.DOI:10.1111/j.1365-2486.2008.01681.x.
[71]
LI L, WANG Y, HU S Y, et al. Responses of soil potential carbon/nitrogen mineralization and microbial activities to extreme droughts in a meadow steppe[J]. The Journal of Applied Ecology, 2020, 31(3):814-820. DOI:10.13287/j.1001-9332.202003.005.
[72]
SIX J, FREY S D, THIET R K, et al. Bacterial and fungal contributions to carbon sequestration in agroecosystems[J]. Soil Science Society of America Journal, 2006, 70(2). DOI: 10.2136/sssaj2004.0347.
[73]
SUN Y, JIN L, WANG C, et al. Drought stress induced increase of fungi:bacteria ratio in a poplar plantation[J]. Catena, 2020, 193(C). DOI: 10.1016/j.catena.2020.104607.
[74]
SPOHN M, CHODAK M. Microbial respiration per unit biomass increases with carbon-to-nutrient ratios in forest soils[J]. Soil Biology and Biochemistry, 2015, 81. DOI: 10.1016/j.soilbio.2014.11.008.
[75]
BARBA J, CUEVA A, BAHN M, et al. Comparing ecosystem and soil respiration:review and key challenges of tower-based and soil measurements[J]. Agric For Meteorol, 2018, 249:434-443.DOI:10.1016/j.agrformet.2017.10.028.
[76]
WARDLE D A, GHANI A. A tale of two theories,a chronosequence and a bioindicator of soil quality[J]. Soil Biol Biochem, 2018, 121:A3-A7.DOI:10.1016/j.soilbio.2018.01.005.
[77]
XIANG S R, DOYLE A, HOLDEN P A, et al. Drying and rewetting effects on C and N mineralization and microbial activity in surface and subsurface California grassland soils[J]. Soil Biol Biochem, 2008, 40(9):2281-2289.DOI:10.1016/j.soilbio.2008.05.004.
[78]
CHOW A T, TANJI K K, GAO S D, et al. Temperature,water content and wet-dry cycle effects on DOC production and carbon mineralization in agricultural peat soils[J]. Soil Biol Biochem, 2006, 38(3):477-488.DOI:10.1016/j.soilbio.2005.06.005.
[79]
SU X L, SU X, ZHOU G Y, et al. Drought accelerated recalcitrant carbon loss by changing soil aggregation and microbial communities in a subtropical forest[J]. Soil Biol Biochem, 2020, 148:107898.DOI:10.1016/j.soilbio.2020.107898.
[80]
SUN S Q, LEI H Q, CHANG S X. Drought differentially affects autotrophic and heterotrophic soil respiration rates and their temperature sensitivity[J]. Biol Fertil Soils, 2019, 55(3):275-283.DOI:10.1007/s00374-019-01347-w.
[81]
FIERER N, STRICKLAND M S, LIPTZIN D, et al. Global patterns in belowground communities[J]. Ecol Lett, 2009, 12(11):1238-1249.DOI:10.1111/j.1461-0248.2009.01360.x.
[82]
QU W D, HAN G X, WANG J, et al. Short-term effects of soil moisture on soil organic carbon decomposition in a coastal wetland of the Yellow River Delta[J]. Hydrobiologia, 2021, 848(14):3259-3271.DOI:10.1007/s10750-020-04422-8.
[83]
THAKUR M P, REICH P B, HOBBIE S E, et al. Reduced feeding activity of soil detritivores under warmer and drier conditions[J]. Nat Clim Change, 2018, 8(1):75-78.DOI:10.1038/s41558-017-0032-6.
[84]
BLANKINSHIP J C, NIKLAUS P A, HUNGATE B A. A meta-analysis of responses of soil biota to global change[J]. Oecologia, 2011, 165(3):553-565.DOI:10.1007/s00442-011-1909-0.
[85]
WU T J, SU F L, HAN H Y, et al. Responses of soil microarthropods to warming and increased precipitation in a semiarid temperate steppe[J]. Appl Soil Ecol, 2014, 84:200-207.DOI:10.1016/j.apsoil.2014.07.003.
[86]
SCHRAMA M, VEEN G F, BAKKER E S, et al. An integrated perspective to explain nitrogen mineralization in grazed ecosystems[J]. Perspect Plant Ecol Evol Syst, 2013, 15(1):32-44.DOI:10.1016/j.ppees.2012.12.001.
[87]
ANDRIUZZI W S, WALL D H. Responses of belowground communities to large aboveground herbivores:meta-analysis reveals biome-dependent patterns and critical research gaps[J]. Glob Change Biol, 2017, 23(9):3857-3868.DOI:10.1111/gcb.13675.
[88]
ABDALLA M, HASTINGS A, CHADWICK D R, et al. Critical review of the impacts of grazing intensity on soil organic carbon storage and other soil quality indicators in extensively managed grasslands[J]. Agric Ecosyst Environ, 2018, 253:62-81.DOI:10.1016/j.agee.2017.10.023.
[89]
CONANT R T, RYAN M G, ÅGREN G I, et al. Temperature and soil organic matter decomposition rates-synthesis of current knowledge and a way forward[J]. Glob Change Biol, 2011, 17(11):3392-3404.DOI:10.1111/j.1365-2486.2011.02496.x.
[90]
HAGEDORN F, JOSEPH J, PETER M, et al. Recovery of trees from drought depends on belowground sink control[J]. Nat Plants, 2016, 2:16111.DOI:10.1038/nplants.2016.111.
[91]
KNAPP A K, CARROLL C J W, DENTON E M, et al. Differential sensitivity to regional-scale drought in six central US grasslands[J]. Oecologia, 2015, 177(4):949-957.DOI:10.1007/s00442-015-3233-6.
[92]
ZHOU X H, ZHOU L Y, NIE Y Y, et al. Similar responses of soil carbon storage to drought and irrigation in terrestrial ecosystems but with contrasting mechanisms:a meta-analysis[J]. Agric Ecosyst Environ, 2016, 228:70-81.DOI:10.1016/j.agee.2016.04.030.
[93]
PÉREZ CASTRO S, CLELAND E E, WAGNER R, et al. Soil microbial responses to drought and exotic plants shift carbon metabolism[J]. ISME J, 2019, 13(7):1776-1787.DOI:10.1038/s41396-019-0389-9.
[94]
APONTE C, MARAÑÓN T, GARCÍA L V. Microbial C,N and P in soils of Mediterranean oak forests:influence of season,canopy cover and soil depth[J]. Biogeochemistry, 2010, 101(1):77-92.DOI:10.1007/s10533-010-9418-5.
[95]
FRAZÃO L A, PICCOLO M D C, FEIGL B J, et al. Inorganic nitrogen,microbial biomass and microbial activity of a sandy Brazilian Cerrado soil under different land uses[J]. Agric Ecosyst Environ, 2010, 135(3):161-167.DOI:10.1016/j.agee.2009.09.003.
[96]
BOUSKILL N J, WOOD T E, BARAN R, et al. Belowground response to drought in a tropical forest soil.I.changes in microbial functional potential and metabolism[J]. Front Microbiol, 2016, 7:525.DOI:10.3389/fmicb.2016.00525.
[97]
BLOOR J M G, ZWICKE M, CATHERINE P C. Drought responses of root biomass provide an indicator of soil microbial drought resistance in grass monocultures[J]. Applied Soil Ecology, 2018, 126.DOI: 10.1016/j.apsoil.2018.02.014.
[98]
ZHOU L G, LIU Y T, ZHANG Y P, et al. Soil respiration after six years of continuous drought stress in the tropical rainforest in Southwest China[J]. Soil Biol Biochem, 2019, 138:107564.DOI:10.1016/j.soilbio.2019.107564.
[99]
MENG T G, WU L Y, ZHANG S L, et al. Vertical distribution of soil dissolved carbon and its influencing factors in the artificial shelterbelt irrigated with saline water in an extreme drought desert[J]. Enviro Sci, 2020, 41(4):1950-1959.
[100]
刘士丹, 卢敬坤, 胡宁, 等. 温度和水分对黑土有机碳矿化的影响[J]. 吉林农业大学学报, 2020, 42(5):552-560.
LIU S D, LU J K, HU N, et al. Effects of temperature and moisture on organic carbon mineralization in black soil[J]. J Jilin Agric Univ, 2020, 42(5):552-560.DOI:10.13327/j.jjlau.2020.4429.
[101]
CANARINI A, CARRILLO Y, MARIOTTE P, et al. Soil microbial community resistance to drought and links to C stabilization in an Australian grassland[J]. Soil Biol Biochem, 2016, 103:171-180.DOI:10.1016/j.soilbio.2016.08.024.
[102]
CHEN X M, DEQIANG Z, GUOHUA L, et al. Effects of precipitation on soil organic carbon fractions in three subtropical forests in southern China[J]. J Plant Ecol, 2016(1):10-19.
[103]
HAN X Y, GAO G Y, LI Z S, et al. Effects of plantation age and precipitation gradient on soil carbon and nitrogen changes following afforestation in the Chinese Loess Plateau[J]. Land Degrad Dev, 2019, 30(18):2298-2310.DOI:10.1002/ldr.3422.
[104]
GRÜNZWEIG J M, HEMMING D, MASEYK K, et al. Water limitation to soil CO2 efflux in a pine forest at the semiarid “timberline”[J]. J Geophys Res, 2009, 114(G3):G03008.DOI:10.1029/2008jg000874.
[105]
ROA-FUENTES L L, HIDALGO C, ETCHEVERS J D, et al. The effects of precipitation regime on soil carbon pools on the Yucatan Peninsula[J]. J Trop Ecol, 2013, 29(5):463-466.DOI:10.1017/s0266467413000552.
[106]
CAMPO J, MERINO A. Variations in soil carbon sequestration and their determinants along a precipitation gradient in seasonally dry tropical forest ecosystems[J]. Glob Change Biol, 2016, 22(5):1942-1956.DOI:10.1111/gcb.13244.
[107]
FEKETE I, LAJTHA K, KOTROCZÓ Z, et al. Long-term effects of climate change on carbon storage and tree species composition in a dry deciduous forest[J]. Glob Change Biol, 2017, 23(8):3154-3168.DOI:10.1111/gcb.13669.
[108]
MEIER I C, LEUSCHNER C. Variation of soil and biomass carbon pools in beech forests across a precipitation gradient[J]. Glob Change Biol, 2010, 16(3):1035-1045.DOI:10.1111/j.1365-2486.2009.02074.x.
[109]
LI P, ZHANG L, YU G R, et al. Interactive effects of seasonal drought and nitrogen deposition on carbon fluxes in a subtropical evergreen coniferous forest in the East Asian monsoon region[J]. Agric For Meteorol, 2018, 263:90-99.DOI:10.1016/j.agrformet.2018.08.009.
[110]
陶冬雪. 降水变化和养分添加对呼伦贝尔草甸草原生态系统碳交换的影响[D]. 北京: 中国农业科学院, 2021.
TAO D X. Effects of precipitation changes and nutrient addition on ecosystem carbon exchange of a meadow grassland in Hulunber[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021.
[111]
杨予静. 穿透雨减少对南亚热带两种人工林土壤团聚体及碳固持的影响[D]. 北京: 中国林业科学研究院, 2018.
YANG Y J. Effects of throughfall exclusion on soil aggregate and carbon sequestration in two subtropical plantations[D]. Beijing: Chinese Academy of Forestry, 2018.
[112]
HYVÖNEN R, ÅGREN G I, LINDER S, et al. The likely impact of elevated[CO2],nitrogen deposition,increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems:a literature review[J]. New Phytol, 2007, 173(3):463-480.DOI:10.1111/j.1469-8137.2007.01967.x.
[113]
LUO Y Q, KEENAN T F, SMITH M. Predictability of the terrestrial carbon cycle[J]. Glob Change Biol, 2015, 21(5):1737-1751.DOI:10.1111/gcb.12766.
[114]
BRADFORD M A, WIEDER W R, BONAN G B, et al. Managing uncertainty in soil carbon feedbacks to climate change[J]. Nat Clim Change, 2016, 6(8):751-758.DOI:10.1038/nclimate3071.
[115]
GARTEN C T, CLASSEN A T, NORBY R J. Soil moisture surpasses elevated CO2 and temperature as a control on soil carbon dynamics in a multi-factor climate change experiment[J]. Plant Soil, 2009, 319(1):85-94.DOI:10.1007/s11104-008-9851-6.
[116]
TAYLOR P G, CLEVELAND C C, WIEDER W R, et al. Temperature and rainfall interact to control carbon cycling in tropical forests[J]. Ecol Lett, 2017, 20(6):779-788.DOI:10.1111/ele.12765.
[117]
NI X Y, YANG W Q, QI Z M, et al. Simple additive simulation overestimates real influence:altered nitrogen and rainfall modulate the effect of warming on soil carbon fluxes[J]. Glob Change Biol, 2017, 23(8):3371-3381.DOI:10.1111/gcb.13588.
[118]
CHANG C T, SPERLICH D, SABATÉ S, et al. Mitigating the stress of drought on soil respiration by selective thinning:contrasting effects of drought on soil respiration of two oak species in a Mediterranean forest[J]. Forests, 2016, 7(12):263.DOI:10.3390/f7110263.
[119]
王瑾, 陈书涛, 丁司丞, 等. 土壤和气候因素对土壤有机碳平均周转时间的影响[J]. 生态环境学报, 2021, 30(6):1192-1201.
WANG J, CHEN S T, DING S C, et al. Effects of the soil and climate factors on the mean turnover times of soil organic carbon[J]. Ecol Environ Sci, 2021, 30(6):1192-1201.DOI:10.16258/j.cnki.1674-5906.2021.06.010.
[120]
严毅萍, 曹建华, 杨慧, 等. 岩溶区不同土地利用方式对土壤有机碳碳库及周转时间的影响[J]. 水土保持学报, 2012, 26(2):144-149.
YAN Y P, CAO J H, YANG H, et al. The impact of different soil types on soil organic carbon pool and turnover in Karst area[J]. J Soil Water Conserv, 2012, 26(2):144-149.DOI:10.13870/j.cnki.stbcxb.2012.02.037.
[121]
ANDEREGG W R L, SCHWALM C, BIONDI F, et al. FOREST ECOLOGY.Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models[J]. Science, 2015, 349(6247):528-532.DOI:10.1126/science.aab1833.
[122]
PENG Y, PEÑUELAS J, VESTERDAL L, et al. Responses of soil fauna communities to the individual and combined effects of multiple global change factors[J]. Ecol Lett, 2022, 25(9):1961-1973.DOI:10.1111/ele.14068.
[123]
PREECE C, VERBRUGGEN E, LIU L, et al. Effects of past and current drought on the composition and diversity of soil microbial communities[J]. Soil Biol Biochem, 2019, 131:28-39.DOI:10.1016/j.soilbio.2018.12.022.
[124]
PEGUERO G, FOLCH E, LIU L, et al. Divergent effects of drought and nitrogen deposition on microbial and arthropod soil communities in a Mediterranean forest[J]. Eur J Soil Biol, 2021, 103:103275.DOI:10.1016/j.ejsobi.2020.103275.
[125]
CANARINI A, MARIOTTE P, INGRAM L, et al. Mineral-associated soil carbon is resistant to drought but sensitive to legumes and microbial biomass in an Australian grassland[J]. Ecosystems, 2018, 21(2):349-359.DOI:10.1007/s10021-017-0152-x.
[126]
DAVIDSON E, LEFEBVRE P A, BRANDO P M, et al. Carbon inputs and water uptake in deep soils of an eastern Amazon forest[J]. Forest Science, 2011, 57(1):528-532.DOI: 10.1016/j.ecss.2011.12.011.
[127]
LIU Y T, LI J, JIN Y Q, et al. The influence of drought strength on soil respiration in a woody savanna ecosystem,southwest China[J]. Plant Soil, 2018, 428(1):321-333.DOI:10.1007/s11104-018-3678-6.
[128]
RUEHR N K, OFFERMANN C A, GESSLER A, et al. Drought effects on allocation of recent carbon:from beech leaves to soil CO2 efflux[J]. New Phytol, 2009, 184(4):950-961.DOI:10.1111/j.1469-8137.2009.03044.x.
[129]
梅婷, 李洋, 宋天顺, 等. 改良剂结合羽毛发酵液施用对吹填土的改良效果[J]. 生物加工过程, 2022, 20(5):558-564.
MEI T, LI Y, SONG T S, et al. Improvement of dredger fill soil by ameliorant combined with feather fermentation broth[J]. Chinese Journal of Bioprocess Engineering, 2022, 20(5):558-564.DOI:10.3969/j.issn.1672-3678.2022.05.011.
[130]
CANARINI A, SCHMIDT H, FUCHSLUEGER L, et al. Ecological memory of recurrent drought modifies soil processes via changes in soil microbial community[J]. Nat Commun, 2021, 12:5308.DOI:10.1038/s41467-021-25675-4.

基金

国家重点研发计划(2021YFD02200403)
江苏省林业局揭榜挂帅项目(LYKJ【2022】01)
江苏省林业局造林项目(2021-2022)

编辑: 王国栋
PDF(6603 KB)

Accesses

Citation

Detail

段落导航
相关文章

/