高温胁迫对植食性昆虫影响研究进展

李慧, 郝德君, 徐天, 代鲁鲁

南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (6) : 215-224.

PDF(1742 KB)
PDF(1742 KB)
南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (6) : 215-224. DOI: 10.12302/j.issn.1000-2006.202209041
特邀专论

高温胁迫对植食性昆虫影响研究进展

作者信息 +

The effects of heat stress on herbivorous insects: an overview and future directions

Author information +
文章历史 +

摘要

昆虫作为变温动物类群,极易遭受高温胁迫的影响。研究高温胁迫对植食性昆虫的影响,可为气候变暖背景下农林害虫的种群动态监测及地理适生区预测提供重要理论依据。笔者从植食性昆虫个体、种间互作关系、种群及群落3个层面,综述了高温胁迫对植食性昆虫影响的国内外进展。研究发现,高温胁迫会对植食性昆虫个体的生长发育、繁殖及生理生化带来负面效应,但昆虫自身也会进化出一系列基于形态、行为及基因表达的热胁迫响应机制。高温胁迫对寄主植物、天敌、共生微生物的影响也能够通过种间互作传递给植食性昆虫,并导致寄主植物-植食性昆虫-天敌3级营养关系发生变化。同时,高温胁迫还能通过影响昆虫个体及种间关系,间接影响昆虫的种群动态、种群多样性及其生态功能,并可能导致植食性昆虫的种群大爆发或衰退。最后,笔者认为此领域未来研究方向为:在个体层面上,应优化高温胁迫处理方式并综合考虑干旱和降水等环境因子,开展农林害虫种群的长期野外监测,应注重高温胁迫对昆虫参与生长发育繁殖功能基因的影响;在种间关系层面上,应关注高温胁迫对昆虫关联的复杂多样的食物网及互作体系的影响;此外,应结合高温胁迫对不同昆虫种类自身生理特性和行为模式的影响,阐明温度升高对昆虫群落的影响。

Abstract

Insects, as a group of ectotherm animals, are extraordinarily susceptible to heat stress. Exploring the effects of heat stress on herbivorous insects can provide an important theoretical basis for monitoring the population dynamics of agricultural and forestry insect pests and predicting potential changes in their geographical distributions under the background of climate warming. From the aspects of individuals, interspecific interaction, populations and communities, we reviewed the research progress of the impacts of heat stress on herbivorous insects. Heat stress has negative effects on the growth, development, reproduction, physiology and biochemistry of herbivorous insects, which has evolved a series of strategies responding to heat stress by modifying morphology, behavior and related gene expression. The effects of heat stress on host plants, natural enemies and symbiotic microorganisms can also be transmitted to herbivorous insects through interspecific interactions, resulting in changes in the tertiary trophic relationships among host plants, herbivorous insects and natural enemies. Meanwhile, heat stress can also indirectly affect herbivorous insects’ population dynamics as well as their diversities and ecological functions in the natural communities, by influencing insect individuals and their interspecific interactions with other organisms, which may lead to large outbreaks or declines in the populations of herbivorous insects. Finally, the future research directions in this field are as follows: from the individual perspective, the treatment mode of high-temperature stress should be optimized, and environmental factors such as drought and precipitation should be comprehensively considered; long-term field monitoring of agricultural and forestry pest populations should be performed, and the influence of high temperature stress on the genes of insect participation in growth, development, and reproduction should be studied; at the interspecific relationship level, attention should be paid to the effects of high temperature stress on the complex and diverse food webs or intercroprising systems associated with insects; in addition, the effects of high temperature stress on the physiological characteristics and behavioral patterns of various insect species should be combined to determine the effects of elevated temperatures on insect communities.

关键词

高温胁迫 / 植食性昆虫 / 种间关系 / 种群动态

Key words

high temperature stress / herbivorous insects / interspecific interaction / population dynamics

引用本文

导出引用
李慧, 郝德君, 徐天, . 高温胁迫对植食性昆虫影响研究进展[J]. 南京林业大学学报(自然科学版). 2022, 46(6): 215-224 https://doi.org/10.12302/j.issn.1000-2006.202209041
LI Hui, HAO Dejun, XU Tian, et al. The effects of heat stress on herbivorous insects: an overview and future directions[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(6): 215-224 https://doi.org/10.12302/j.issn.1000-2006.202209041
中图分类号: S763   

参考文献

[1]
GONZÁLEZ-TOKMAN D, CÓRDOBA-AGUILAR A, DÁTTILO W, et al. Insect responses to heat:physiological mechanisms,evolution and ecological implications in a warming world[J]. Biol Rev Camb Philos Soc, 2020, 95(3):802-821.DOI:10.1111/brv.12588.
[2]
FILAZZOLA A, MATTER S F, MACIVOR J S. The direct and indirect effects of extreme climate events on insects[J]. Sci Total Environ, 2021, 769:145161.DOI:10.1016/j.scitotenv.2021.145161.
[3]
VIDAL M C, ANNEBERG T J, CURÉ A E, et al. The variable effects of global change on insect mutualisms[J]. Curr Opin Insect Sci, 2021, 47:46-52.DOI:10.1016/j.cois.2021.03.002.
[4]
BLOIS J L, ZARNETSKE P L, FITZPATRICK M C, et al. Climate change and the past,present,and future of biotic interactions[J]. Science, 2013, 341(6145):499-504.DOI:10.1126/science.1237184.
[5]
董兆克, 戈峰. 气温升高对昆虫发生发展的影响[J]. 应用昆虫学报, 2011, 48(5):1141-1148.
DONG Z K, GE F. The fitness of insects in response to climate warming[J]. Chin J Appl Entomol, 2011, 48(5):1141-1148.
[6]
史彩华, 胡静荣, 张友军. 高温对昆虫生殖生理的影响及其在农业害虫防治中的展望[J]. 中国植保导刊, 2017, 37(3):24-32.
SHI C H, HU J R, ZHANG Y J, Effect of heat stress on insect reproduction-physiology and outlook in agricultural insect pests control[J]. China Plant Protect, 2017, 37(3): 24-32.
[7]
HARVEY J A, HEINEN R, GOLS R, et al. Climate change-mediated temperature extremes and insects:from outbreaks to breakdowns[J]. Glob Chang Biol, 2020, 26(12):6685-6701.DOI:10.1111/gcb.15377.
[8]
MA C S, MA G, PINCEBOURDE S. Survive a warming climate:insect responses to extreme high temperatures[J]. Annu Rev Entomol, 2021, 66:163-184.DOI:10.1146/annurev-ento-041520-074454.
[9]
白月亮, 周文武, 祝增荣. 气候变暖对天敌昆虫的影响[J]. 浙江大学学报(农业与生命科学版), 2022, 48(3):269-278.
BAI Y L, ZHOU W W, ZHU Z R. Effects of global warming on insect natural enemies[J]. J Zhejiang Univ (Agric Life Sci), 2022, 48(3):269-278.
[10]
COLINET H, SINCLAIR B J, VERNON P, et al. Insects in fluctuating thermal environments[J]. Annu Rev Entomol, 2015, 60:123-140.DOI:10.1146/annurev-ento-010814-021017.
[11]
杜尧, 马春森, 赵清华, 等. 高温对昆虫影响的生理生化作用机理研究进展[J]. 生态学报, 2007, 27(4):1565-1572.
DU Y, MA C S, ZHAO Q H, et al. Effects of heat stress on physiological and biochemical mechanisms of insects:a literature review[J]. Acta Ecol Sin, 2007, 27(4):1565-1572.
[12]
BOWLER K, TERBLANCHE J S. Insect thermal tolerance:what is the role of ontogeny,ageing and senescence?[J]. Biol Rev Camb Philos Soc, 2008, 83(3):339-355.DOI:10.1111/j.1469-185x.2008.00046.x.
[13]
TOBIN P C, NAGARKATTI S, LOEB G, et al. Historical and projected interactions between climate change and insect voltinism in a multivoltine species[J]. Glob Change Biol, 2008, 14(5):951-957.DOI:10.1111/j.1365-2486.2008.01561.x.
[14]
WILLIAMS K D, HELIN A B, POSLUSZNY J, et al. Effect of heat shock,pretreatment and hsp70 copy number on wing development in Drosophila melanogaster[J]. Mol Ecol, 2003, 12(5):1165-1177.DOI:10.1046/j.1365-294x.2003.01771.x.
[15]
GAO G Z, FENG L K, PERKINS L E, et al. Effect of the frequency and magnitude of extreme temperature on the life history traits of the large cotton aphid,Acyrthosiphon gossypii (Hemiptera:Aphididae):implications for their population dynamics under global warming[J]. Entomologia, 2018, 37(2):110-113. DOI:10.1127/entomologia/2018/0514.
[16]
CHIU M C, KUO J J, KUO M H. Life stage-dependent effects of experimental heat waves on an insect herbivore[J]. Ecol Entomol, 2015, 40(2):175-181.DOI:10.1111/een.12173.
[17]
KING A M, MACRAE T H. Insect heat shock proteins during stress and diapause[J]. Annu Rev Entomol, 2015, 60:59-75.DOI:10.1146/annurev-ento-011613-162107.
[18]
SALES K, VASUDEVA R, GAGE M J G. Fertility and mortality impacts of thermal stress from experimental heatwaves on different life stages and their recovery in a model insect[J]. R Soc Open Sci, 2021, 8(3):201717.DOI:10.1098/rsos.201717.
[19]
CHEN Y Y, ZHANG W, MA G, et al. More stressful event does not always depress subsequent life performance[J]. J Integr Agric, 2019, 18(10):2321-2329.
[20]
CHEN H S, ZHENG X W, LUO M, et al. Effect of short-term high-temperature exposure on the life history parameters of Ophraella communa[J]. Sci Rep, 2018, 8:13969.DOI:10.1038/s41598-018-32262-z.
[21]
ZHOU J C, LIU Q Q, HAN Y X, et al. High temperature tolerance and thermal-adaptability plasticity of Asian corn borer (Ostrinia furnacalis Guenée) after a single extreme heat wave at the egg stage[J]. J Asia Pac Entomol, 2018, 21(3):1040-1047.DOI:10.1016/j.aspen.2018.07.024.
[22]
ROCHA S, KERDELHUÉ C, BEN JAMAA M L, et al. Effect of heat waves on embryo mortality in the pine processionary moth[J]. Bull Entomol Res, 2017, 107(5):583-591.DOI:10.1017/S0007485317000104.
[23]
ZHENG J C, CHENG X B, HOFFMANN A A, et al. Are adult life history traits in oriental fruit moth affected by a mild pupal heat stress?[J]. J Insect Physiol, 2017, 102:36-41.DOI:10.1016/j.jinsphys.2017.09.004.
[24]
马红悦. 沙葱萤叶甲成虫夏滞育调控的分子机理[D]. 呼和浩特: 内蒙古农业大学, 2021.
MA H R. Molecular mechanisms of summer diapause regulation in the adult Galeruca daurica[D]. Hohhot: Inner Mongolia Agricultural University, 2021.
[25]
HAO Y J, GUO Q, BIN C. Comparative analysis of antioxidant enzyme activities in non-diapause, summer diapause and winter diapause pupae of Delia antiqua (Diptera: Anthomyiidae)[J]. Acta Entomologia Sinica, 2018, 61(3): 263-270. DOI: 10.16380/j.kcxb.2018.03.001.
[26]
BRANDT E E, KELLEY J P, ELIAS D O. Temperature alters multimodal signaling and mating success in an ectotherm[J]. Behav Ecol Sociobiol, 2018, 72(12):191.DOI:10.1007/s00265-018-2620-5.
[27]
ABRAM P K, BOIVIN G, MOIROUX J, et al. Behavioural effects of temperature on ectothermic animals:unifying thermal physiology and behavioural plasticity[J]. Biol Rev, 2017, 92(4):1859-1876.DOI:10.1111/brv.12312.
[28]
LEITH N T, JOCSON D I, FOWLER-FINN K D. Temperature-related breakdowns in the coordination of mating in Enchenopa binotata treehoppers (Hemiptera:Membracidae)[J]. Ethology, 2020, 126(9):870-882.DOI:10.1111/eth.13033.
[29]
JOCSON D M I, SMEESTER M E, LEITH N T, et al. Temperature coupling of mate attraction signals and female mate preferences in four populations of Enchenopa treehopper (Hemiptera:Membracidae)[J]. J Evol Biol, 2019, 32(10):1046-1056.DOI:10.1111/jeb.13506.
[30]
CONRAD T, STÖCKER C, AYASSE M. The effect of temperature on male mating signals and female choice in the red mason bee,Osmia bicornis (L.)[J]. Ecol Evol, 2017, 7(21):8966-8975.DOI:10.1002/ece3.3331.
[31]
KATSUKI M, MIYATAKE T. Effects of temperature on mating duration,sperm transfer and remating frequency in Callosobruchus chinensis[J]. J Insect Physio, 200, 55(2):113-116.DOI:10.1016/j.jinsphys.2008.10.012.
[32]
李慧. 热激蛋白在松墨天牛响应高温胁迫中的功能研究[D]. 南京: 南京林业大学, 2021.
LI H. Function analysis of heat shock protein in Monochamus alternatus response to high temperature[D]. Nanjing: Nanjing Forestry University, 2021.
[33]
ZHAO M T, WANG Y, ZHOU Z S, et al. Effects of periodically repeated heat events on reproduction and ovary development of Agasicles hygrophila (Coleoptera:Chrysomelidae)[J]. J Econ Entomol, 2016, 109(4):1586-1594.DOI:10.1093/jee/tow093.
[34]
赵鑫. 莲草直胸跳甲的热胁迫适应性研究[D]. 重庆: 西南大学, 2009.
ZHAO X. Thermal adaptation of Agasicles hygrophila (Coleoptera:Chrysomelidae) in responses to temperature stress[D]. Chongqing: Southwest University, 2009.
[35]
SALES K, VASUDEVA R, DICKINSON M E, et al. Experimental heatwaves compromise sperm function and cause transgenerational damage in a model insect[J]. Nat Commun, 2018, 9:4771.DOI:10.1038/s41467-018-07273-z.
[36]
HIROYOSHI S, MITSUNAGA T, REDDY G V P. Effects of temperature,age and stage on testis development in diamondback moth,Plutella xylostella (L.) (Lepidoptera:Plutellidae)[J]. Physiol Entomol, 2021, 46(3/4):200-209.DOI:10.1111/phen.12359.
[37]
HU J R, MEDISON R G, ZHANG S, et al. Impacts of non-lethal high-temperature stress on the development and reproductive organs of Bradysia odoriphaga[J]. Insects, 2022, 13(1):74.DOI:10.3390/insects13010074.
[38]
VASUDEVA R, SUTTER A, SALES K, et al. Adaptive thermal plasticity enhances sperm and egg performance in a model insect[J]. eLife, 2019, 8:e49452.DOI:10.7554/eLife.49452.
[39]
马春森, 马罡, 赵飞. 气候变暖对麦蚜的影响[J]. 应用昆虫学报, 2014, 51(6):1435-1443.
MA C S, MA G, ZHAO F. Impact of global warming on cereal aphids[J]. Chin J Appl Entomol, 2014, 51(6):1435-1443.DOI:10.7679/j.issn.2095-1353.2014.167.
[40]
马罡. 模拟气候变暖对麦蚜避热行为及其在植物上分布影响的研究[D]. 北京: 中国农业科学院, 2012.
MA G. Effect of heat-escape behavior of cereal aphids on their microbabitat distribution:a simulation study[D]. Beijing: Chinese Academy of Agricultural Sciences, 2012
[41]
MA G, BAI C M, WANG X J, et al. Behavioural thermoregulation alters microhabitat utilization and demographic rates in ectothermic invertebrates[J]. Animal Behav, 2018, 142:49-57.DOI:10.1016/j.anbehav.2018.06.003.
[42]
KEARNEY M, SHINE R, PORTER W P. The potential for behavioral thermoregulation to buffer cold-blooded animals against climate warming[J]. Proc Nat Acad Sci USA, 2009, 106(10):3835-3840.DOI:10.1073/pnas.0808913106.
[43]
CLISSOLD F J, COGGAN N, SIMPSON S J. Insect herbivores can choose microclimates to achieve nutritional homeostasis[J]. J Exp Biol, 2013, 216(11):2089-2096.DOI:10.1242/jeb.078782.
[44]
CRAIG STILLWELL R, FOX C W. Geographic variation in body size,sexual size dimorphism and fitness components of a seed beetle:local adaptation versus phenotypic plasticity[J]. Oikos, 2009, 118(5):703-712.DOI:10.1111/j.1600-0706.2008.17327.x.
[45]
GILLOOLY J F, BROWN J H, WEST G B, et al. Effects of size and temperature on metabolic rate[J]. Science, 2001, 293(5538):2248-2251.DOI:10.1126/science.1061967.
[46]
CRAIG STILLWELL R, FOX C W. Geographic variation in body size,sexual size dimorphism and fitness components of a seed beetle:local adaptation versus phenotypic plasticity[J]. Oikos, 2009, 118(5):703-712.DOI:10.1111/j.1600-0706.2008.17327.x.
[47]
BAUERFEIND S S, FISCHER K. Increased temperature reduces herbivore host-plant quality[J]. Glob Chang Biol, 2013, 19(11): 3272-3282. DOI: 10.1111/gcb.12297.
[48]
RAJPUROHIT S, PARKASH R, RAMNIWAS S. Body melanization and its adaptive role in thermoregulation and tolerance against desiccating conditions in drosophilids[J]. Entomol Research, 2008, 38(1):49-60.DOI:10.1111/j.1748-5967.2008.00129.x.
[49]
YODER J A, DENLINGER D L. Water balance in flesh fly pupae and water vapor absorption associated with diapause[J]. J Exp Biol, 1991, 157(1):273-286.DOI:10.1242/jeb.157.1.273.
[50]
鞠瑞亭. 城市入侵害虫悬铃木方翅网蝽对高温胁迫的耐受性及其生理机制[D]. 上海: 复旦大学, 2012.
JU R T. Tolerance to high temperatures of an unban invasive insect species,the Sycamore lace bug,Corythucha ciliata and its physiological mechanisms[D]. Shanghai: Fudan University, 2012.
[51]
COHEN A C, PATANA R. Ontogenetic and stress-related changes in hemolymph chemistry of beet armyworms[J]. Comp Biochem Physiol A Physiol, 1982,71(2):193-198.DOI:10.1016/0300- 9629(82)90388-7.
[52]
WALTER M F, PETERSEN N S, BIESSMANN H. Heat shock causes the collapse of the intermediate filament cytoskeleton in Drosophila embryos[J]. Dev Genet, 1990, 11(4):270-279.DOI:10.1002/dvg.1020110405.
[53]
SOMERO G N. Proteins and temperature[J]. Annu Rev Physiol, 1995, 57:43-68.DOI:10.1146/annurev.ph.57.030195.000355.
[54]
乔利. 茶小绿叶蝉Empoasca onukii Matsuda对短期高低温的响应及分子机制研究[D]. 杨凌: 西北农林科技大学, 2015.
QIAO L. Response of Empoasca onukii Matsuda to short-term high or low temperature and the molecular mechanisms[D]. Yangling: Northwest A & F University, 2015.
[55]
MUTERO A, BRIDE J M, PRALAVORIO M, et al. Drosophila melanogaster acetylcholinesterase:identification and expression of two mutations responsible for cold-and heat-sensitive phenotypes[J]. Molec Gen Genet, 1994, 243(6):699-705.DOI:10.1007/BF00279580.
[56]
TISSIÉRES A, MITCHELL H K, TRACY U M. Protein synthesis in salivary glands of Drosophila melanogaster:relation to chromosome puffs[J]. J Mol Biol, 1974,84(3):389-398.DOI:10.1016/0022- 2836(74)90447-1.
[57]
LI H, LI S Y, CHEN J, et al. A heat shock 70kDa protein MaltHSP70-2 contributes to thermal resistance in Monochamus alternatus (Coleoptera:Cerambycidae):quantification,localization,and functional analysis[J]. BMC Genomics, 2022, 23(1):646.DOI:10.1186/s12864-022-08858-1.
[58]
LI H, TAO R, QIAO H, et al. Functional analysis of small heat shock proteins providing evidence of temperature tolerance in Hyphantria cunea[J]. J Appl Entomol, 2022, 146(1/2):130-143.DOI:10.1111/jen.12939.
[59]
HU J T, CHEN B, LI Z H. Thermal plasticity is related to the hardening response of heat shock protein expression in two Bactrocera fruit flies[J]. J Insect Physiol, 2014, 67:105-113.DOI:10.1016/j.jinsphys.2014.06.009.
[60]
GU X Y, CHEN W, PERRY T, et al. Genomic knockout of hsp23 both decreases and increases fitness under opposing thermal extremes in Drosophila melanogaster[J]. Insect Biochem Mol Biol, 2021, 139:103652.DOI:10.1016/j.ibmb.2021.103652.
[61]
LI H, ZHAO X Y, QIAO H, et al. Comparative transcriptome analysis of the heat stress response in Monochamus alternatus hope (Coleoptera:Cerambycidae)[J]. Front Physiol, 2020, 10:1568.DOI:10.3389/fphys.2019.01568.
[62]
WAHID A, GELANI S, ASHRAF M, et al. Heat tolerance in plants:an overview[J]. Environ Exp Bot, 2007, 61(3):199-223.DOI:10.1016/j.envexpbot.2007.05.011.
[63]
STOKS R, VERHEYEN J, VAN DIEVEL M, et al. Daily temperature variation and extreme high temperatures drive performance and biotic interactions in a warming world[J]. Curr Opin Insect Sci, 2017, 23:35-42.DOI:10.1016/j.cois.2017.06.008.
[64]
VANWALLENDAEL A, SOLTANI A, EMERY N C, et al. A molecular view of plant local adaptation:incorporating stress-response networks[J]. Annu Rev Plant Biol, 2019, 70:559-583.DOI:10.1146/annurev-arplant-050718-100114.
[65]
PINCEBOURDE S, SUPPO C. The vulnerability of tropical ectotherms to warming is modulated by the microclimatic heterogeneity[J]. Integr Comp Biol, 2016, 56(1):85-97.DOI:10.1093/icb/icw014.
[66]
ESCOBAR-BRAVO R, KLINKHAMER P G L, LEISS K A. Interactive effects of UV-B light with abiotic factors on plant growth and chemistry,and their consequences for defense against arthropod herbivores[J]. Front Plant Sci, 2017, 8:278.DOI:10.3389/fpls.2017.00278.
[67]
LORETO F, SCHNITZLER J P. Abiotic stresses and induced BVOCs[J]. Trends Plant Sci, 2010, 15(3):154-166.DOI:10.1016/j.tplants.2009.12.006.
[68]
HAVKO N E, DAS M R, MCCLAIN A M, et al. Insect herbivory antagonizes leaf cooling responses to elevated temperature in tomato[J]. Proc Natl Acad Sci USA, 2020, 117(4):2211-2217.DOI:10.1073/pnas.1913885117.
[69]
MUTAMISWA R, MACHEKANO H, NYAMUKONDIWA C, et al. Host plant-related responses on the thermal fitness of Chilo partellus (Swinhoe) (Lepidoptera:Crambidae)[J]. Arthropod Plant Interact, 2020, 14(4):463-471.DOI:10.1007/s11829-020-09762-9.
[70]
LEMOINE N P, BURKEPILE D E, PARKER J D. Variable effects of temperature on insect herbivory[J]. Peer J, 2014, 2:e376.DOI:10.7717/peerj.376.
[71]
BISBIS M B, GRUDA N, BLANKE M. Potential impacts of climate change on vegetable production and product quality: a review[J]. J Clean Prod, 2018, 170:1602-1620.DOI:10.1016/j.jclepro.2017.09.224.
[72]
HANCE T, VAN BAAREN J, VERNON P, et al. Impact of extreme temperatures on parasitoids in a climate change perspective[J]. Annu Rev Entomol, 2007, 52:107-126.DOI:10.1146/annurev.ento.52.110405.091333.
[73]
AGOSTA S J, JOSHI K A, KESTER K M. Upper thermal limits differ among and within component species in a tritrophic host-parasitoid-hyperparasitoid system[J]. PLoS One, 2018, 13(6):e0198803.DOI:10.1371/journal.pone.0198803
[74]
SCHREVEN S J J, FRAGO E, STENS A, et al. Contrasting effects of heat pulses on different trophic levels,an experiment with a herbivore-parasitoid model system[J]. PLoS One, 2017, 12(4):e0176704.DOI:10.1371/journal.pone.0176704.
[75]
FURLONG M J, ZALUCKI M P. Climate change and biological control:the consequences of increasing temperatures on host-parasitoid interactions[J]. Curr Opin Insect Sci, 2017, 20:39-44.DOI:10.1016/j.cois.2017.03.006.
[76]
GILLESPIE D R, NASREEN A, MOFFAT C E, et al. Effects of simulated heat waves on an experimental community of pepper plants,green peach aphids and two parasitoid species[J]. Oikos, 2012, 121(1):149-159.DOI:10.1111/j.1600-0706.2011.19512.x.
[77]
MOORE M E, HILL C A, KINGSOLVER J G. Differing thermal sensitivities in a host-parasitoid interaction:high,fluctuating developmental temperatures produce dead wasps and giant caterpillars[J]. Funct Ecol, 2021, 35(3):675-685.DOI:10.1111/1365-2435.13748.
[78]
CHEN C, GOLS R, BIERE A, et al. Differential effects of climate warming on reproduction and functional responses on insects in the fourth trophic level[J]. Funct Ecol, 2019, 33(4):693-702.DOI:10.1111/1365-2435.13277.
[79]
SENTIS A, HEMPTINNE J L, BRODEUR J. Effects of simulated heat waves on an experimental plant-herbivore-predator food chain[J]. Glob Chang Biol, 2013, 19(3):833-842.DOI:10.1111/gcb.12094.
[80]
BANNERMAN J A, ROITBERG B D. Impact of extreme and fluctuating temperatures on aphid-parasitoid dynamics[J]. Oikos, 2014, 123(1):89-98.DOI:10.1111/j.1600-0706.2013.00686.x.
[81]
VALLS A, KRAL-O’BRIEN K, KOPCO J, et al. Timing alters how a heat shock affects a host-parasitoid interaction[J]. J Therm Biol, 2020, 90: 102596. DOI: 10.1016/j.jtherbio.2020.102596.
[82]
GUAY J F, BOUDREAULT S, MICHAUD D, et al. Impact of environmental stress on aphid clonal resistance to parasitoids:role of Hamiltonella defensa bacterial symbiosis in association with a new facultative symbiont of the pea aphid[J]. J Insect Physiol, 2009, 55(10):919-926.DOI:10.1016/j.jinsphys.2009.06.006.
[83]
BARTON B T, IVES A R. Direct and indirect effects of warming on aphids,their predators,and ant mutualists[J]. Ecology, 2014, 95(6):1479-1484.DOI:10.1890/13-1977.1.
[84]
KASK K, KÄNNASTE A, TALTS E, et al. How specialized volatiles respond to chronic and short-term physiological and shock heat stress in Brassica nigra[J]. Plant Cell Environ, 2016, 39(9):2027-2042.DOI:10.1111/pce.12775.
[85]
GOLS R, HARVEY J A. Plant-mediated effects in the Brassicaceae on the performance and behaviour of parasitoids[J]. Phytochem Rev, 2009, 8(1):187-206.DOI:10.1007/s11101-008-9104-6.
[86]
BONCAN D A T, TSANG S S K, LI C D, et al. Terpenes and terpenoids in plants:interactions with environment and insects[J]. Int J Mol Sci, 2020, 21(19):7382.DOI:10.3390/ijms21197382.
[87]
BOGGS C L, INOUYE D W. A single climate driver has direct and indirect effects on insect population dynamics[J]. Ecol Lett, 2012, 15(5):502-508.DOI:10.1111/j.1461-0248.2012.01766.x.
[88]
SINCLAIR B J, WILLIAMS C M, TERBLANCHE J S. Variation in thermal performance among insect populations[J]. Physiol Biochem Zool, 2012, 85(6):594-606.DOI:10.1086/665388.
[89]
MA G, RUDOLF V H, MA C S. Extreme temperature events alter demographic rates, relative fitness, and community structure[J]. Glob Chang Biol, 2015, 21(5): 1794-1808. DOI: 10.1111/gcb.12654.
[90]
JEPSEN J U, HAGEN S B, IMS R A, et al. Climate change and outbreaks of the geometrids Operophtera brumata and Epirrita autumnata in subarctic birch forest:evidence of a recent outbreak range expansion[J]. J Anim Ecol, 2008, 77(2):257-264.DOI:10.1111/j.1365-2656.2007.01339.x.
[91]
SINCLAIR B J. Linking energetics and overwintering in temperate insects[J]. J Therm Biol, 2015, 54:5-11.DOI:10.1016/j.jtherbio.2014.07.007.
[92]
DEUTSCH C A, TEWKSBURY J J, HUEY R B, et al. Impacts of climate warming on terrestrial ectotherms across latitude[J]. Proc Natl Acad Sci USA, 2008, 105(18):6668-6672.DOI:10.1073/pnas.0709472105.
[93]
MÜLLER J, BRUSTEL H, BRIN A, et al. Increasing temperature may compensate for lower amounts of dead wood in driving richness of saproxylic beetles[J]. Ecography, 2015, 38(5):499-509.DOI:10.1111/ecog.00908.
[94]
OHLBERGER J. Climate warming and ectotherm body size-from individual physiology to community ecology[J]. Funct Ecol, 2013, 27(4):991-1001.DOI:10.1111/1365-2435.12098.
[95]
PAPANIKOLAOU A D, KÜHN I, FRENZEL M, et al. Landscape heterogeneity enhances stability of wild bee abundance under highly varying temperature,but not under highly varying precipitation[J]. Landscape Ecol, 2017, 32(3):581-593.DOI:10.1007/s10980-016-0471-x.
[96]
BAUDIER K M, MUDD A E, ERICKSON S C, et al. Microhabitat and body size effects on heat tolerance:implications for responses to climate change (army ants:Formicidae,Ecitoninae)[J]. J Anim Ecol, 2015, 84(5):1322-1330.DOI:10.1111/1365-2656.12388.
[97]
MARINI L, ØKLAND B, JÖNSSON A M, et al. Climate drivers of bark beetle outbreak dynamics in Norway spruce forests[J]. Ecography, 2017, 40(12):1426-1435.DOI:10.1111/ecog.02769.
[98]
BENTZ B J, RÉGNIÈRE J, FETTIG C J, et al. Climate change and bark beetles of the western United States and Canada:direct and indirect effects[J]. BioScience, 2010, 60(8):602-613.DOI:10.1525/bio.2010.60.8.6.
[99]
LOXDALE H D, LUSHAI G, HARVEY J A. The evolutionary improbability of ‘generalism’ in nature,with special reference to insects[J]. Biol J Linn Soc, 2011, 103(1):1-18.DOI:10.1111/j.1095-8312.2011.01627.x.
[100]
KEANE R M, CRAWLEY M J. Exotic plant invasions and the enemy release hypothesis[J]. Trends Ecol Evol, 2002, 17(4):164-170.DOI:10.1016/S0169-5347(02)02499-0.
[101]
DILLON M E, LOZIER J D. Adaptation to the abiotic environment in insects:the influence of variability on ecophysiology and evolutionary genomics[J]. Curr Opin Insect Sci, 2019, 36:131-139.DOI:10.1016/j.cois.2019.09.003.
[102]
JANGJOO M, MATTER S F, ROLAND J, et al. Demographic fluctuations lead to rapid and cyclic shifts in genetic structure among populations of an alpine butterfly,Parnassius smintheus[J]. J Evol Biol, 2020, 33(5):668-681.DOI:10.1111/jeb.13603.
[103]
HANSKI I, SCHULZ T, WONG S C, et al. Ecological and genetic basis of metapopulation persistence of the Glanville fritillary butterfly in fragmented landscapes[J]. Nat Commun, 2017, 8:14504.DOI:10.1038/ncomms14504.
[104]
SHAMA L N, KUBOW K B, JOKELA J, et al. Bottlenecks drive temporal and spatial genetic changes in alpine caddisfly metapopulations[J]. BMC Evol Biol, 2011, 11(1):278.DOI:10.1186/1471-2148-11-278.
[105]
MURPHY S M, BATTOCLETTI A H, TINGHITELLA R M, et al. Complex community and evolutionary responses to habitat fragmentation and habitat edges:What can we learn from insect science?[J]. Curr Opin Insect Sci, 2016, 14:61-65.DOI:10.1016/j.cois.2016.01.007.
[106]
MACGREGOR C J, WILLIAMS J H, BELL J R, et al. Moth biomass increases and decreases over 50 years in Britain[J]. Nat Ecol Evol, 2019, 3(12):1645-1649.DOI:10.1038/s41559-019-1028-6.
[107]
FORISTER M L, FORDYCE J A, NICE C C, et al. Impacts of a millennium drought on butterfly faunal dynamics[J]. Clim Chang Responses, 2018, 5(1):3.DOI:10.1186/s40665-018-0039-x.

基金

国家自然科学基金项目(32201562)
国家自然科学基金项目(31470650)
江苏省自然科学基金项目(BK20220412)

编辑: 王国栋
PDF(1742 KB)

Accesses

Citation

Detail

段落导航
相关文章

/