南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (6): 225-232.doi: 10.12302/j.issn.1000-2006.202209067
所属专题: 南京林业大学120周年校庆特刊
收稿日期:
2022-09-30
修回日期:
2022-10-19
出版日期:
2022-11-30
发布日期:
2022-11-24
通讯作者:
黄麟
基金资助:
SUN Meiling(), HUANG Lin(), YE Jianren, HE Jiao, WANG Zhi
Received:
2022-09-30
Revised:
2022-10-19
Online:
2022-11-30
Published:
2022-11-24
Contact:
HUANG Lin
摘要:
我国人工林面积居世界首位,但木材人均消费量仅为发达国家的1/5,木材对外依存度接近50%。用材林对我国木材安全、生态安全、森林碳汇和绿色发展具有重要意义,但用材林树种单一、生物多样性水平较低,林分结构简单,生物灾害频发,其中真菌病害已成为我国用材林的主要生物灾害。笔者围绕我国用材林树种重要真菌病害的致病机制和绿色防控等科学问题,综述了我国主要用材林树种的重要真菌病害种类、危害特点、病原致病分子机制和内生菌防治病害等方面的研究进展,并对未来用材林重要真菌病害的流行监测、病原-寄主互作、病害的栽培管理与可持续绿色防控等综合防控策略等进行了展望。
中图分类号:
孙美玲,黄麟,叶建仁,等. 我国用材林主要真菌病害致病机制及内生菌对病害的生防作用[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 225-232.
SUN Meiling, HUANG Lin, YE Jianren, HE Jiao, WANG Zhi. Advances on pathogenic mechanisms and endophytes-employed biological control of fungal diseases on major timber forests in China[J].Journal of Nanjing Forestry University (Natural Science Edition), 2022, 46(6): 225-232.DOI: 10.12302/j.issn.1000-2006.202209067.
表1
胶孢炭疽菌部分致病相关基因"
基因名 gene name | 主要功能 gene function description | 参考文献 reference |
---|---|---|
Chip | 调控孢子萌发与附着胞分化 | Liu等[ |
Cam | 调控孢子萌发与附着胞形成 | Liu等[ |
CgpelB | 调控果胶裂解酶、果胶酸裂解酶、致病力 | Yakoby等[ |
CgCTR2 | 调控细胞铜离子平衡、H2O2抗性和致病力 | Barhoom等[ |
CgRac1 | 调控细胞分裂与极性生长、产孢与附着胞成熟、致病性 | Nesher等[ |
Cgl-SLT2 | 调控产孢、附着胞形成、致病性 | Yong等[ |
PacC | 调控pH-信号转录 | Alkan等[ |
CgLAC1 | 调控致病力 | 韦运谢[ |
CgRhoB | 调控胞内cAMP积累、细胞壁完整性、H2O2抗性、致病力 | Xu等[ |
CgAP1 | 调控氧化胁迫应答、侵入过程中ROS的清除、致病力 | Sun等[ |
CgMK1 | 调控营养生长、附着胞形成、黑色素生物合成、致病性 | He等[ |
CgRGS1 | 调控胶孢炭疽菌的营养生长,分生孢子产生及萌发,细胞壁完整性及致病力 | 吴曼莉[ |
Cgsho1 | 参与产孢、附着胞形成及渗透压耐受性 | 张楠等[ |
CgRGS2 | 调控营养生长、分生孢子产量及萌发,氧化应激反应及细胞壁完整性 | 吴曼莉[ |
CgRGS7 | 调控胶孢炭疽菌分生孢子产量、芽管的形态发育、附着胞形成及致病性 | 吴曼莉[ |
CgMck1 | 调控细胞壁完整性、附着胞和侵染菌丝形成、致病性 | Fang等[ |
CgMkk1 | 调控细胞壁完整性、附着胞和侵染菌丝形成、致病性 | Fang等[ |
CgMps1 | 调控细胞壁完整性、附着胞和侵染菌丝形成、致病性 | Fang等[ |
CgPBS2 | 调控渗透胁迫和盐胁迫抗性、杀菌剂咯菌腈敏感性 | Lin等[ |
CgCDC42 | 调控营养生长、孢子与附着胞形态、细胞壁完整性、H2O2抗性、致病力 | Wang等[ |
CgCrzA | 调控孢子形态、细胞壁完整性、侵染结构发育、致病性 | Wang等[ |
CgHog1 | 调控渗透胁迫和杀菌剂咯菌腈敏感性 | Li等[ |
CgSCD1 | 调控黑色素沉积、侵染菌丝发育、致病力 | Wang等[ |
CgNPG1 | 调控孢子形态、产孢、附着胞发育、致病力 | Liang等[ |
CgSte50-Ste11-Ste7-Mk1级联 | 调控菌丝疏水性、附着胞形成、侵染菌丝发育、致病性 | Wang等[ |
CgPpz1 | 调控钾离子吸收、离子胁迫抗性、细胞壁完整性、寄主ROS清除、致病力 | Zhang等[ |
CgSat4 | 调控钾离子吸收、离子胁迫抗性、致病力 | Pan等[ |
CgFADBD | 调控致病力 | 张琦玮等[ |
CgGcp1 | 调控营养生长、胁迫抗性、产孢与附着胞发育、致病力 | 张兴媛等[ |
[1] | PAYN T, CARNUS J M, FREER-SMITH P, et al. Changes in planted forests and future global implications[J]. For Ecol Manag, 2015, 352:57-67.DOI:10.1016/j.foreco.2015.06.021. |
[2] | 孙长山. 探索中国森林资源发展现状[J]. 林业勘查设计, 2020, 49(4):22-24,42. |
SUN C S. Exploration on the development status of forest resources in China[J]. For Investig Des, 2020, 49(4):22-24,42. | |
[3] | 田明华, 杜磊, 王芳, 等. 我国森林资源木材生产能力预测分析[J]. 林产工业, 2022, 59(4):57-63. |
TIAN M H, DU L, WANG F, et al. Forecast and analysis of the timber production capacity of China’s forest resources[J]. China For Prod Ind, 2022, 59(4):57-63. DOI:10.19531/j.issn1001-5299.202204012. | |
[4] | 路宗岩, 周国英, 陈玉华, 等. 杉木炭疽病拮抗菌HY32的筛选及其应用[J]. 生物技术通报, 2013(3):181-185. |
LU Z Y, ZHOU G Y, CHEN Y H, et al. Screening and application of the antagonistic bacterium HY32 against Colletotrichum gloeosporioides[J]. Biotechnol Bull, 2013(3):181-185.DOI:10.13560/j.cnki.biotech.bull.1985.2013.03.021. | |
[5] | 曾大鹏, 刘开玲, 贺正兴, 等. 杉木炭疽病的研究[J]. 林业科学, 1981, 17(3):250-257. |
ZENG D P, LIU K L, HE Z X, et al. A study on infection of anthracnoce on Cunninghamia lanceolata(Lamb.) Hook[J]. Sci Silvae Sin, 1981, 17(3):250-257. | |
[6] | 廖旺姣, 邹东霞, 罗辑, 等. 广西杉木炭疽病病原鉴定及生物学特性测定[J]. 南方农业学报, 2022, 53(4):1040-1048. DOI:10.3969/j.issn.2095-1191.2022.04.017. |
LIAO W J, ZOU D X, LUO J, et al. Identification and biological characteristics of the pathogens of Chinese fir anthracnose in Guangxi[J]. Journal of Southern Agriculture, 2022, 53(4):1040-1048. DOI: 10.3969/j.issn.2095-1191.2022.04.017. | |
[7] | HE J, LI D W, ZHU Y N, et al. Diversity and pathogenicity of Colletotrichum species causing anthracnose on Cunninghamia lanceolata[J]. Plant Pathol, 2022, 71(8):1757-1773.DOI:10.1111/ppa.13611. |
[8] | HUANG L, ZHU Y N, YANG J Y, et al. Shoot blight on Chinese fir (Cunninghamia lanceolata) is caused by Bipolaris oryzae[J]. Plant Dis, 2018, 102(3):500-506.DOI:10.1094/pdis-07-17-1032-re. |
[9] | 蓝肖, 董利军, 黄开勇, 等. 杉木主要病虫害种类及防治研究综述[J]. 广西林业科学, 2015, 44(2):162-167. |
LAN X, DONG L J, HUANG K Y, et al. Main species and prevention research on diseases and pests of Cunninghamia lanceolata[J]. Guangxi For Sci, 2015, 44(2):162-167.DOI:10.19692/j.cnki.gfs.2015.02.014. | |
[10] | 沈伯葵. 松梢枯病综述[J]. 江苏林业科技, 1992, 19(1):39-41. |
SHEN B K. Summary of pine shoot blight[J]. J Jiangsu For Sci & Technol, 1992, 19(1):39-41. | |
[11] | 陈海燕. 杨树溃疡病病原菌营养体亲和性研究[D]. 杨凌: 西北农林科技大学, 2006. |
CHEN H Y. Study on vegetative compatibility of poplar-canker’s pathogen[D]. Yangling: Northwest A & F University, 2006. | |
[12] | 王勇, 吴小芹. 苏北杨树黑斑型溃疡病的研究[J]. 南京林业大学学报(自然科学版), 2008, 32(4):101-104. |
WANG Y, WU X Q. Study on black blotch canker of poplars in north Jiangsu[J]. J Nanjing For Univ (Nat Sci Ed), 2008, 32(4):101-104.DOI:10.3969/j.issn.1000-2006.2008.04.023. | |
[13] | 程燕林, 吕全, 梁军, 等. 杨树溃疡病病原:葡萄座腔菌科真菌间关系的系统学初探[J]. 中国森林病虫, 2011, 30(6):12-17. |
CHENG Y L, LV Q, LIANG J, et al. Relationships among fungi of Botryosphaeriaceae causing poplar canker[J]. For Pest Dis, 2011, 30(6):12-17.DOI:10.3969/j.issn.1671-0886.2011.06.004. | |
[14] | 贾伟, 马强, 宿静瑶, 等. 内蒙古呼和浩特市杨树腐烂病病原菌鉴定[J]. 西北林学院学报, 2022, 37(4):210-215,237. |
JIA W, MA Q, SU J Y, et al. Pathogen identification of poplar stem rot in Hohhot of Inner Mongolia[J]. J Northwest For Univ, 2022, 37(4):210-215,237. | |
[15] | 张艳刚, 张小龙, 李虎群. 白洋淀地区杨树溃疡病发生危害特点及综合防治措施[J]. 农药科学与管理, 2012, 33(8):54-55. |
ZHANG Y G, ZHANG X L, LI H Q. Occurrence and harm characteristics and comprehensive control measures of poplar canker in Baiyangdian area[J]. Pestic Sci Adm, 2012, 33(8):54-55.DOI:10.3969/j.issn.1002-5480.2012.08.023. | |
[16] | 贺伟, 杨旺, 沈瑞祥. 北京杨炭疽病的初步研究[J]. 森林病虫通讯, 1991, 10(4):7-9. |
HE W, YANG W, SHEN R X. Preliminary study on anthracnose of poplar in Beijing[J]. For Pest Dis, 1991, 10(4):7-9. | |
[17] | 李铮. 北京地区杨树炭疽病病原鉴定及群体遗传分析[D]. 北京: 北京林业大学, 2012. |
LI Z. Identification of poplar anthrax pathogens and population genetic analysis in Beijing[D]. Beijing: Beijing Forestry University, 2012. | |
[18] | 刘丽萍, 高洁, 李玉. 植物炭疽菌属Colletotrichum真菌研究进展[J]. 菌物研究, 2020, 18(4):266-281. |
LIU L P, GAO J, LI Y. Advances in knowledge of the fungi referred to the genus Colletotrichum[J]. J Fungal Res, 2020, 18(4):266-281.DOI:10.13341/j.jfr.2020.8007. | |
[19] | 宁豫婷, 张康普, 李俊中. 杨树黑斑病发生规律调查及综合防治[J]. 河北林业科技, 2010(2):36-37. |
NING Y T, ZHANG K P, LI J Z. Investigation and integrated control of poplar black spot[J]. J Hebei For Sci Technol, 2010(2):36-37.DOI:10.16449/j.cnki.issn1002-3356.2010.02.042. | |
[20] | 檀根甲. 采后苹果与炭疽菌的相互作用及病害控制机理研究[D]. 合肥: 安徽农业大学, 2009. |
TAN G J. Postharvest interaction between apple and anthracnose caused by collectotrichum gloeosporioides and control mechanism of the disease[D]. Hefei: Anhui Agricultural University, 2009. | |
[21] | 江昌俊, 余有本. 苯丙氨酸解氨酶的研究进展[J]. 安徽农业大学学报, 2001, 28(4):425-430. |
JIANG C J, YU Y B. Research progress of phenylalanine ammonia-lyase[J]. Anhui Agric Univ, 2001, 28(4):425-430.DOI:10.13610/j.cnki.1672-352x.2001.04.020. | |
[22] | 谢春艳, 宾金华, 陈兆平, 等. 多酚氧化酶及其生理功能[J]. 生物学通报, 1999, 34(6):11-13. |
XIE C Y, BIN J H, CHEN Z P, et al. Polyphenol oxidase and its physiological function[J]. Bull Biol, 1999, 34(6):11-13. | |
[23] | 黄麟, 杨济云, 方玉兰, 等. 杉木炭疽菌遗传转化及附着胞发育过程的细胞核行为观察[J]. 南京林业大学学报(自然科学版), 2017, 41(6):68-72. |
HUANG L, YANG J Y, FANG Y L, et al. Efficient genetic transformation and nuclear behavior during the process of appressorial development in Colletotrichum gloeosporioides[J]. J Nanjing For Univ (Nat Sci Ed),2017, 41(6):68-72.DOI:10.3969/j.issn.1000-2006.201705009. | |
[24] | HE M, KERSHAW M J, SOANES D M, et al. Infection-associated nuclear degeneration in the rice blast fungus Magnaporthe oryzae requires non-selective macro-autophagy[J]. PLoS One, 2012, 7(3):e33270.DOI:10.1371/journal.pone.0033270. |
[25] | 田呈明, 王笑连, 余璐, 等. 林木与病原菌分子互作机制研究进展[J]. 南京林业大学学报(自然科学版), 2021, 45(1):12. |
TIAN C M, WANG X L, YU L, et al. A review on the studies of molecular interaction between forest trees and phytopathogens[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(1):12. DOI: 10.12302/j.issn.1000-2006.202010001 | |
[26] | NESHER I, BARHOOM S, SHARON A. Cell cycle and cell death are not necessary for appressorium formation and plant infection in the fungal plant pathogen Colletotrichum gloeosporioides[J]. BMC Biol, 2008, 6(1):9.DOI:10.1186/1741-7007-6-9. |
[27] | BARHOOM S, SHARON A. cAMP regulation of “pathogenic” and “saprophytic” fungal spore germination[J]. Fungal Genet Biol, 2004, 41(3):317-326.DOI:10.1016/j.fgb.2003.11.011. |
[28] | HE P, WANG Y L, WANG X L, et al. The mitogen-activated protein kinase CgMK1 governs appressorium formation,melanin synthesis,and plant infection of Colletotrichum gloeosporioides[J]. Front Microbiol, 2017, 8:2216.DOI:10.3389/fmicb.2017.02216. |
[29] | LIU Z Q, WU M L, KE Z J, et al. Functional analysis of a regulator of G-protein signaling CgRGS1 in the rubber tree anthracnose fungus Colletotrichum gloeosporioides[J]. Arch Microbiol, 2018, 200(3):391-400.DOI:10.1007/s00203-017-1455-1. |
[30] | XU X, WANG Y L, TIAN C M, et al. The Colletotrichum gloeosporioides RhoB regulates cAMP and stress response pathways and is required for pathogenesis[J]. Fungal Genet Biol, 2016, 96:12-24.DOI:10.1016/j.fgb.2016.09.002. |
[31] | YANG G Y, YANG J, ZHANG Q W, et al. The effector protein CgNLP1 of Colletotrichum gloeosporioides affects invasion and disrupts nuclear localization of necrosis-induced transcription factor HbMYB8-like to suppress plant defense signaling[J]. Front Microbiol, 2022, 13:911479.DOI:10.3389/fmicb.2022.911479. |
[32] | WANG M Y, JI Z R, YAN H F, et al. Effector Sntf2 interacted with chloroplast-related protein Mdycf39 promoting the colonization of Colletotrichum gloeosporioides in apple leaf[J]. Int J Mol Sci, 2022, 23(12):6379.DOI:10.3390/ijms23126379. |
[33] | LIU Z M, KOLATTUKUDY P E. Identification of a gene product induced by hard-surface contact of Colletotrichum gloeosporioides conidia as a ubiquitin-conjugating enzyme by yeast complementation[J]. J Bacteriol, 1998, 180(14):3592-3597.DOI:10.1128/jb.180.14.3592-3597.1998. |
[34] | YAKOBY N, BENO-MOUALEM D, KEEN N T, et al. Colletotrichum gloeosporioides pelB is an important virulence factor in avocado fruit-fungus interaction[J]. Mol Plant Microbe Interactions, 2001, 14(8):988-995.DOI:10.1094/mpmi.2001.14.8.988. |
[35] | BARHOOM S, KUPIEC M, ZHAO X H, et al. Functional characterization of CgCTR2,a putative vacuole copper transporter that is involved in germination and pathogenicity in Colletotrichum gloeosporioides[J]. Eukaryot Cell, 2008, 7(7):1098-1108.DOI:10.1128/EC.00109-07. |
[36] | NESHER I, MINZ A, KOKKELINK L, et al. Regulation of pathogenic spore germination by CgRac1 in the fungal plant pathogen Colletotrichum gloeosporioides[J]. Eukaryot Cell, 2011, 10(8):1122-1130.DOI:10.1128/ec.00321-10 |
[37] | YONG H Y, BAKAR F D A, ILLIAS R M, et al. Cgl-SLT2 is required for appressorium formation,sporulation and pathogenicity in Colletotrichum gloeosporioides[J]. Braz J Microbiol, 2014, 44(4):1241-1250.DOI:10.1590/s1517-83822013000400031.[PubMed] |
[38] | ALKAN N, MENG X C, FRIEDLANDER G, et al. Global aspects of pacC regulation of pathogenicity genes in Colletotrichum gloeosporioides as revealed by transcriptome analysis[J]. Mol Plant Microbe Interact, 2013, 26(11):1345-1358.DOI:10.1094/MPMI-03-13-0080-R. |
[39] | 韦运谢. 芒果炭疽病菌漆酶基因Lac1的克隆与致病相关功能鉴定[D]. 海口: 海南大学, 2014. |
WEI Y X. Coloning and functional identification of laccase gene(Lac1) in pathogenicity from Colletotrichum gloeosporioides-the pathogen of mango anthracnose disease[D]. Haikou: Hainan University, 2014. | |
[40] | SUN Y J, WANG Y L, TIAN C M. bZIP transcription factor CgAP1 is essential for oxidative stress tolerance and full virulence of the poplar anthracnose fungus Colletotrichum gloeosporioides[J]. Fungal Genet Biol, 2016, 95:58-66.DOI:10.1016/j.fgb.2016.08.006. |
[41] | 吴曼莉. 橡胶树胶孢炭疽菌G蛋白信号调控因子CgRGS1、CgRGS2和CgRGS7的克隆及生物学功能[D]. 海口: 海南大学, 2017. |
WU M L. Cloning and biological function of G protein signaling factor CgRGS1,CgRGS2 and CgRGS7 in Colletotrichum gloeosporioides[D]. Haikou: Hainan University, 2017. | |
[42] | 张楠, 柳志强, 吴曼莉, 等. 胶孢炭疽菌CgSho1基因的克隆与功能分析[J]. 植物病理学报, 2017, 47(1):40-49. |
ZHANG N, LIU Z Q, WU M L, et al. Gene cloning and functional analysis of CgSho1 in Colletotrichum gloeosporioides[J]. Acta Phytopathol Sin, 2017, 47(1):40-49.DOI:10.13926/j.cnki.apps.000002. | |
[43] | FANG Y L, XIA L M, WANG P, et al. The MAPKKK CgMck1 is required for cell wall integrity,appressorium development,and pathogenicity in Colletotrichum gloeosporioides[J]. Genes, 2018, 9(11):543.DOI:10.3390/genes9110543. |
[44] | LIN C H, HUANG G X, ZHENG F C, et al. Functional characterization of CgPBS2,a MAP kinase kinase in Colletotrichum gloeosporioides, using osmotic stress sensitivity as a selection marker[J]. Eur J Plant Pathol, 2018, 152(3):801-813.DOI:10.1007/s10658-018-1529-1. |
[45] | WANG X L, XU X, LIANG Y M, et al. A Cdc42 homolog in Colletotrichum gloeosporioides regulates morphological development and is required for ROS-mediated plant infection[J]. Curr Genet, 2018, 64(5):1153-1169.DOI:10.1007/s00294-018-0833-9. |
[46] | WANG P, LI B, PAN Y T, et al. Calcineurin-responsive transcription factor CgCrzA is required for cell wall integrity and infection-related morphogenesis in Colletotrichum gloeosporioides[J]. Plant Pathol J, 2020, 36(5):385-397.DOI:10.5423/ppj.oa.04.2020.0071. |
[47] | LI Y F, HE P, TIAN C M, et al. CgHog1 controls the adaptation to both sorbitol and fludioxonil in Colletotrichum gloeosporioides[J]. Fungal Genet Biol, 2020, 135:103289.DOI:10.1016/j.fgb.2019.103289. |
[48] | WANG T, REN D D, GUO H, et al. CgSCD1 is essential for melanin biosynthesis and pathogenicity of Colletotrichum gloeosporioides[J]. Pathogens, 2020, 9(2):141.DOI:10.3390/pathogens9020141. |
[49] | LIANG C, ZHANG B, ZHOU Y, et al. CgNPG1 as a novel pathogenic gene of Colletotrichum gloeosporioides from Hevea brasiliensis in mycelial growth,conidiation,and the invasive structures development[J]. Front Microbiol, 2021, 12:629387.DOI:10.3389/fmicb.2021.629387. |
[50] | WANG X L, LU D X, TIAN C M. Mitogen-activated protein kinase cascade CgSte50-Ste11-Ste7-Mk1 regulates infection-related morphogenesis in the poplar anthracnose fungus Colletotrichum gloeosporioides[J]. Microbiol Res, 2021, 248:126748.DOI:10.1016/j.micres.2021.126748. |
[51] | ZHANG Y Z, LI B, PAN Y T, et al. Protein phosphatase CgPpz1 regulates potassium uptake,stress responses,and plant infection in Colletotrichum gloeosporioides[J]. Phytopathology, 2022, 112(4):820-829.DOI:10.1094/PHYTO-02-21-0051-R. |
[52] | PAN Y T, LI L W, YANG J Y, et al. Involvement of protein kinase CgSat4 in potassium uptake,cation tolerance,and full virulence in Colletotrichum gloeosporioides[J]. Front Plant Sci, 2022, 13:773898.DOI:10.3389/fpls.2022.773898. |
[53] | 张琦玮, 张贝, 赵丽, 等. 胶孢炭疽菌CgFADBD基因敲除突变体的构建及其表型分析[J/OL]. 分子植物育种, 2022:1-14[2022-10-19]. http://kns.cnki.net/kcms/detail/46.1068.S.20220412.1436.017.html. |
ZHANG Q W, ZHANG B, ZHAO L, et al. Construction and phenotypic analysis of CgFADBD gene knockout mutant of Colletotrichum gloeosporioides[J]. Mol Plant Breed,1-14.[2022-10-19]. http://kns.cnki.net/kcms/detail/46.1068.S.20220412.1436.017.html. | |
[54] | 张兴媛, 王地广, 高菁, 等. 胶孢炭疽菌C2H2型转录因子CgGcp1的生物学功能[J]. 微生物学通报, 2022, 49(7):2587-2598. |
ZHANG X Y, WANG D G, GAO J, et al. Biological functions of a C2H2 transcription factor CgGcp1 in Colletotrichum gloeosporioides[J]. Microbiol China, 2022, 49(7):2587-2598.DOI:10.13344/j.microbiol.china.211023. | |
[55] | 孙伟, 陈淑宁, 闫晓静, 等. 我国防治炭疽病杀菌剂的应用现状[J]. 现代农药, 2022, 21(2):1-6. |
SUN W, CHEN S N, YAN X J, et al. Application status of fungicides to control anthracnose disease in China[J]. Mod Agrochem, 2022, 21(2):1-6. | |
[56] | 郭润芳, 刘晓光, 高克祥, 等. 拮抗木霉菌在生物防治中的应用与研究进展[J]. 中国生物防治, 2002, 18(4):180-184. |
GUO R F, LIU X G, GAO K X, et al. Progress in biocontrol research with Trichoderma[J]. Chin J Biol Control, 2002, 18(4):180-184.DOI:10.16409/j.cnki.2095-039x.2002.04.009. | |
[57] | 迟玉杰, 杨谦. 毛壳菌对植物病害的生物防治及存在的问题[J]. 农业系统科学与综合研究, 2002, 18(3):215-218. |
CHI Y J, YANG Q. Biological control of plant diseases with Chaetomium spp.and the problems in its application[J]. Syst Sciemces Compr Stud Agric, 2002, 18(3):215-218. | |
[58] | HARDOIM P R, VAN OVERBEEK L S, BERG G, et al. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes[J]. Microbiol Mol Biol Rev, 2015, 79(3):293-320.DOI:10.1128/MMBR.00050-14. |
[59] | DOLATABAD H K, JAVAN-NIKKHAH M, SHIER W T. Evaluation of antifungal,phosphate solubilisation,and siderophore and chitinase release activities of endophytic fungi from Pistacia vera[J]. Mycol Progress, 2017, 16(8):777-790.DOI:10.1007/s11557-017-1315-z. |
[60] | BIAN J Y, FANG Y L, SONG Q, et al. The fungal endophyte Epicoccum dendrobii as a potential biocontrol agent against Colletotrichum gloeosporioides[J]. Phytopathology, 2021, 111(2):293-303.DOI:10.1094/PHYTO-05-20-0170-R. |
[61] | REN J H, LI H, WANG Y F, et al. Biocontrol potential of an endophytic Bacillus pumilus JK-SX001 against poplar canker[J]. Biol Control, 2013, 67(3):421-430.DOI:10.1016/j.biocontrol.2013.09.012. |
[62] | LIU A K, ZHANG P F, BAI B X, et al. Volatile organic compounds of endophytic Burkholderia pyrrocinia strain JK-SH007 promote disease resistance in poplar[J]. Plant Dis, 2020, 104(6):1610-1620.DOI:10.1094/pdis-11-19-2366-re. |
[63] | 陈艳彬, 韩燕燕, 王斐, 等. 吡咯伯克霍尔德氏菌JK-SH007产嗜铁素的相关基因克隆及条件优化[J]. 中国生物防治学报, 2019, 35(4):630-641. |
CHEN Y B, HAN Y Y, WANG F, et al. Cloning and conditions optimization of the siderophore producing gene for Burkholderia pyrrocinia JK-SH007[J]. Chin J Biol Control, 2019, 35(4):630-641.DOI:10.16409/j.cnki.2095-039x.2019.04.001. | |
[64] | 杨欣, 张鹏飞, 白变霞, 等. 群体感应信号物质对吡咯伯克霍尔德氏菌JK-SH007在杨树内定殖的影响[J]. 中国生物防治学报, 2019, 35(6):949-957. |
YANG X, ZHANG P F, BAI B X, et al. Effect of quorum sensing signal substance on endogenous colonization of Burkholderia pyrrocinia JK-SH007 in poplar seedlings[J]. Chin J Biol Control, 2019, 35(6):949-957.DOI:10.16409/j.cnki.2095-039x.2019.06.023. | |
[65] | REN J H, YE J R, LIU H, et al. Isolation and characterization of a new Burkholderia pyrrocinia strain JK-SH007 as a potential biocontrol agent[J]. World J Microbiol Biotechnol, 2011, 27(9):2203-2215.DOI:10.1007/s11274-011-0686-6. |
[66] | CUI W L, LU X Q, BIAN J Y, et al. Curvularia spicifera and Curvularia muehlenbeckiae causing leaf blight on Cunninghamia lanceolata[J]. Plant Pathol, 2020, 69(6):1139-1147.DOI:10.1111/ppa.13198. |
[1] | 徐宏强,汪贵斌,曹福亮,曾祥东. 生物覆盖对银杏用材林土壤酶活性的影响[J]. 南京林业大学学报(自然科学版), 2015, 39(02): 21-26. |
[2] | 吴小芹;何月秋;刘忠华. 葡萄座腔菌属所致树木溃疡病发生与研究进展[J]. 南京林业大学学报(自然科学版), 2001, 25(01): 61-66. |
[3] | 梁军;徐锡增;吕士行. Ⅰ-69杨胶合板用材林最佳造林密度研究[J]. 南京林业大学学报(自然科学版), 1998, 22(01): 1-4. |
[4] | 梁军;方升佐;徐锡增. Ⅰ-69杨工业用材林直径分布及产量模型系统的研究[J]. 南京林业大学学报(自然科学版), 1996, 20(02): 65-70. |
[5] | 汪业勖,徐锡增. Ⅰ-69杨纸浆用材林萌芽更新的研究[J]. 南京林业大学学报(自然科学版), 1995, 19(04): 57-61. |
[6] | 梁军,方升佐,徐锡增. Ⅰ-69杨胶合板用材林优化栽培模式[J]. 南京林业大学学报(自然科学版), 1995, 19(04): 45-50. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||