[1] |
TETTELIN H, MASIGNANI V, CIESLEWICZ M J, et al. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae:implications for the microbial pan-genome[J]. Proc Natl Acad Sci USA, 2005, 102(39):13950-13955.DOI:10.1073/pnas.0506758102.
|
[2] |
LI Y H, ZHOU G Y, MA J X, et al. De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits[J]. Nat Biotechnol, 2014, 32(10):1045-1052.DOI:10.1038/nbt.2979.
|
[3] |
HIRSCH C N, FOERSTER J M, JOHNSON J M, et al. Insights into the maize pan-genome and pan-transcriptome[J]. Plant Cell, 2014, 26(1):121-135.DOI:10.1105/tpc.113.119982.
|
[4] |
SCHATZ M C, MARON L G, STEIN J C, et al. Whole genome de novo assemblies of three divergent strains of rice,Oryza sativa,document novel gene space of aus and indica[J]. Genome Biol, 2014, 15(11):506.DOI:10.1186/PREACCEPT-2784872521277375.
|
[5] |
GOLICZ A A, BAYER P E, BARKER G C, et al. The pangenome of an agronomically important crop plant Brassica oleracea[J]. Nat Commun, 2016, 7:13390.DOI:10.1038/ncomms13390.
|
[6] |
PINOSIO S, GIACOMELLO S, FAIVRE-RAMPANT P, et al. Characterization of the poplar pan-genome by genome-wide identification of structural variation[J]. Mol Biol Evol, 2016, 33(10):2706-2719.DOI:10.1093/molbev/msw161.
|
[7] |
LIU Y C, DU H L, LI P C, et al. Pan-genome of wild and cultivated soybeans[J]. Cell, 2020, 182(1):162-176.e13.DOI:10.1016/j.cell.2020.05.023.
|
[8] |
CAO K, PENG Z, ZHAO X, et al. Pan-genome analyses of peach and its wild relatives provide insights into the genetics of disease resistance and species adaptation[EB/OL]. (2020-09-13)[2022-10-05]. https://www.biorxiv.org/content/10.1101/2020.07.13.200204v1.abstract.
|
[9] |
DIFAZIO S, SLAVOV G, JOSHI C. Populus:a premier pioneer system for plant genomics[C]// JOSHI C P,DIFAZIO S P,KOLE C. Genetics, Genomics and Breeding of Poplar. Enfield, USA: Science Publishers, 2011.
|
[10] |
GA T, S D, S J, et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray)[J]. Science, 2006, 313(5793): 1596-604.DOI:10.1126/science.1128691.
|
[11] |
MA T, WANG J Y, ZHOU G K, et al. Genomic insights into salt adaptation in a desert poplar[J]. Nat Commun, 2013, 4:2797.DOI:10.1038/ncomms3797.
|
[12] |
WANG J, DING J H, TAN B Y, et al. A major locus controls local adaptation and adaptive life history variation in a perennial plant[J]. Genome Biol, 2018, 19(1):72.DOI:10.1186/s13059-018-1444-y.
|
[13] |
XUE L J, WU H T, CHEN Y N, et al. Evidences for a role of two Y-specific genes in sex determination in Populus deltoides[J]. Nat Commun, 2020, 11:5893.DOI:10.1038/s41467-020-19559-2.
|
[14] |
BAI S J, WU H N, ZHANG J P, et al. Genome assembly of Salicaceae Populus deltoides (eastern cottonwood) I-69 based on nanopore sequencing and hi-C technologies[J]. J Hered, 2021, 112(3):303-310.DOI:10.1093/jhered/esab010.
|
[15] |
WU H N, YAO D, CHEN Y H, et al. De novo genome assembly of Populus simonii further supports that Populus simonii and Populus trichocarpa belong to different sections[J]. G3 Genes|Genomes|Genetics, 2020, 10(2):455-466.DOI:10.1534/g3.119.400913.
|
[16] |
YANG W L, WANG D Y, LI Y L, et al. A general model to explain repeated turnovers of sex determination in the Salicaceae[J]. Mol Biol Evol, 2020, 38(3):968-980.DOI:10.1093/molbev/msaa261.
|
[17] |
LIU Y J, WANG X R, ZENG Q Y. De novo assembly of white poplar genome and genetic diversity of white poplar population in Irtysh River Basin in China[J]. Sci China Life Sci, 2019, 62(5):609-618.DOI:10.1007/s11427-018-9455-2.
|
[18] |
ZHANG L, ZHAO J T, BI H, et al. Bioinformatic analysis of chromatin organization and biased expression of duplicated genes between two poplars with a common whole-genome duplication[J]. Hortic Res, 2021, 8:62.DOI:10.1038/s41438-021-00494-2.
|
[19] |
LI Y, WANG D, WANG W, et al. A chromosome-level Populus qiongdaoensis genome assembly provides insights into tropical adaptation and a cryptic turnover of sex determination[J]. Mol Ecol, 2022:2022-06-17. DOI:10.1111/mec.16566.
|
[20] |
QIU D Y, BAI S L, MA J C, et al. The genome of Populus alba × Populus tremula var.glandulosa clone 84K[J]. DNA Res, 2019, 26(5):423-431.DOI:10.1093/dnares/dsz020.
|
[21] |
TONG S F, WANG Y B, CHEN N N, et al. PtoNF-YC9-SRMT-PtoRD26 module regulates the high saline tolerance of a triploid poplar[J]. Genome Biol, 2022, 23(1):148.DOI:10.1186/s13059-022-02718-7.
|
[22] |
ZHANG B Y, ZHU W X, DIAO S, et al. The poplar pangenome provides insights into the evolutionary history of the genus[J]. Commun Biol, 2019, 2:215.DOI:10.1038/s42003-019-0474-7.
|
[23] |
LI H, FENG X W, CHU C. The design and construction of reference pangenome graphs with minigraph[J]. Genome Biol, 2020, 21(1):265.DOI:10.1186/s13059-020-02168-z.
|
[24] |
QIN P, LU H W, DU H L, et al. Pan-genome analysis of 33 genetically diverse rice accessions reveals hidden genomic variations[J]. Cell, 2021, 184(13):3542-3558.e16.DOI:10.1016/j.cell.2021.04.046.
|
[25] |
TAO Y F, LUO H, XU J B, et al. Extensive variation within the pan-genome of cultivated and wild sorghum[J]. Nat Plants, 2021, 7(6):766-773.DOI:10.1038/s41477-021-00925-x.
|
[26] |
ZHOU Y, ZHANG Z Y, BAO Z G, et al. Graph pangenome captures missing heritability and empowers tomato breeding[J]. Nature, 2022, 606(7914):527-534.DOI:10.1038/s41586-022-04808-9.
|
[27] |
ZHANG Z Y, CHEN Y, ZHANG J L, et al. Improved genome assembly provides new insights into genome evolution in a desert poplar (Populus euphratica)[J]. Mol Ecol Resour, 2020, 20(3):781-794.DOI:10.1111/1755-0998.13142.
|
[28] |
EVANS L M, SLAVOV G T, RODGERS-MELNICK E, et al. Population genomics of Populus trichocarpa identifies signatures of selection and adaptive trait associations[J]. Nat Genet, 2014, 46(10):1089-1096.DOI:10.1038/ng.3075.
|
[29] |
AN X M, GAO K, CHEN Z, et al. High quality haplotype-resolved genome assemblies of Populus tomentosa Carr.: a stabilized interspecific hybrid species widespread in Asia[J]. Mol Ecol Resour, 2022, 22(2):786-802.DOI:10.1111/1755-0998.13507.
|
[30] |
BOLGER A M, LOHSE M, USADEL B. Trimmomatic: a flexible trimmer for Illumina sequence data[J]. Bioinformatics, 2014, 30(15):2114-2120.DOI:10.1093/bioinformatics/btu170.
|
[31] |
SIMÃO F A, WATERHOUSE R M, IOANNIDIS P, et al. BUSCO:assessing genome assembly and annotation completeness with single-copy orthologs[J]. Bioinformatics, 2015, 31(19):3210-3212.DOI:10.1093/bioinformatics/btv351.
|
[32] |
EMMS D M, KELLY S. OrthoFinder:solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy[J]. Genome Biol, 2015, 16(1):157.DOI:10.1186/s13059-015-0721-2.
|
[33] |
SANDERSON M J. Estimating absolute rates of molecular evolution and divergence times:a penalized likelihood approach[J]. Mol Biol Evol, 2002, 19(1):101-9.
|
[34] |
DE BIE T, CRISTIANINI N, DEMUTH J P, et al. CAFE:a computational tool for the study of gene family evolution[J]. Bioinformatics, 2006, 22(10):1269-1271.DOI:10.1093/bioinformatics/btl097.
|
[35] |
TANG D, JIA Y X, ZHANG J Z, et al. Addendum:genome evolution and diversity of wild and cultivated potatoes[J]. Nature, 2022, 609(7929):E14.DOI:10.1038/s41586-022-05298-5.
|
[36] |
WANG Y P, TANG H B, DEBARRY J D, et al. MCScanX:a toolkit for detection and evolutionary analysis of gene synteny and collinearity[J]. Nucleic Acids Res, 2012, 40(7):e49.DOI:10.1093/nar/gkr1293.
|
[37] |
ALEXA A, RAHNENFUHRER J. topGO: enrichment analysis for gene ontology. R package version 2.36.0.[EB/OL].[2022-09-12]. https://bioconductor.org/packages/release/bioc/html/topGO.html
|
[38] |
YU G C, WANG L G, HAN Y Y, et al. clusterProfiler:an R package for comparing biological themes among gene clusters[J]. OMICS, 2012, 16(5):284-287.DOI:10.1089/omi.2011.0118.
|
[39] |
MARÇAIS G, DELCHER A L, PHILLIPPY A M, et al. MUMmer4:a fast and versatile genome alignment system[J]. PLoS Comput Biol, 2018, 14(1):e1005944.DOI:10.1371/journal.pcbi.1005944.
|
[40] |
GOEL M, SUN H Q, JIAO W B, et al. SyRI:finding genomic rearrangements and local sequence differences from whole-genome assemblies[J]. Genome Biol, 2019, 20(1):277.DOI:10.1186/s13059-019-1911-0.
|
[41] |
GARRISON E, SIRÉN J, NOVAK A M, et al. Variation graph toolkit improves read mapping by representing genetic variation in the reference[J]. Nat Biotechnol, 2018, 36(9):875-879.DOI:10.1038/nbt.4227.
|
[42] |
CHEN K Y. Type Ⅱ Mads-box genes associated with poplar apical bud development and dormancy[D]. Maryland: University of Maryland, 2008.
|
[43] |
LI W, LIU J N, ZHANG H Y, et al. Plant pan-genomics:recent advances,new challenges,and roads ahead[J]. J Genet Genom, 2022, 49(9):833-846.DOI:10.1016/j.jgg.2022.06.004.
|
[44] |
GUI S T, WEI W J, JIANG C L, et al. A pan-Zea genome map for enhancing maize improvement[J]. Genome Biol, 2022, 23(1):178.DOI:10.1186/s13059-022-02742-7.
|