外源信号物质对檀香幼苗生长和光合特性的影响

李振双, 王倩, 朱媛, 杨富成, 梁俊峰, 陆俊锟

南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (6) : 271-278.

PDF(4219 KB)
PDF(4219 KB)
南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (6) : 271-278. DOI: 10.12302/j.issn.1000-2006.202207037
研究论文

外源信号物质对檀香幼苗生长和光合特性的影响

作者信息 +

Effects of exogenous signal substances on growth and photosynthetic characteristics of Santalum album seedlings

Author information +
文章历史 +

摘要

【目的】根系分泌物在植物种间关系中发挥着重要作用。研究根系分泌物及一些根系常见的化学物质对半寄生檀香生长、根系发育、养分吸收和光合特性的影响,筛选出促进檀香幼苗生长的寄主根系分泌物或化学物质,为檀香的科学育苗提供参考。【方法】 选取0.5年生的半同胞家系檀香幼苗为试验材料,设置10个外源信号物质处理,包括5种植物根系分泌物[寄主植物降香黄檀(Dalbergia odorifera)、台湾相思(Acacia confusa)、人面子(Dracontomelon duperrereanum)、重阳木(Bischofia polycarpa)和寄生植物檀香(Santalum album)]、4种吸器诱导物质[2,6-二甲氧基对苯醌 (DMBQ)、芒柄花素、槲皮素和丁香醛]和1个对照处理(水),处理3个月后测定檀香幼苗的生长指标(株高、地径、生物量)、根系形态(总根长、根表面积)、养分(N、P、K)含量和光合特性指标[叶绿素相对含量(SPAD)净光合速率、气孔导度、蒸腾速率]等。【结果】 外源信号物质能影响檀香幼苗的生理特性,降香黄檀根系分泌物、DMBQ和丁香醛处理能显著提高檀香幼苗的株高、地上与地下生物量;除重阳木外,其他植物根系分泌物和4种化学物质处理均显著增加了檀香幼苗的总根长、根表面积和小细根长度;与对照相比,外源信号物质均提高了檀香幼苗N、P、K等养分吸收能力,其中以DMBQ和降香黄檀根系分泌物处理效果最佳;降香黄檀和台湾相思根系分泌物、DMBQ及丁香醛处理均显著提高了檀香叶片的SPAD值;降香黄檀根系分泌物和4种化学物质处理显著提高了檀香幼苗的光合自养能力;相关性分析显示,檀香生长指标、生理指标与根系之间(粗细根、粗根长度除外)呈显著正相关;檀香吸器数与总根长、根表面积呈极显著正相关关系,说明檀香吸器发育与根系生长密切相关。【结论】 优良寄主植物根系分泌物及一些化学物质的添加能有效促进檀香幼苗根系发育、养分吸收以及光合能力。研究结果能为檀香的壮苗培育提供重要的实践指导。

Abstract

【Objective】Root exudates play an important role in the plant interspecific relationship. The effects of host root exudates and chemicals on growth, root development, nutrient accumulation and photosynthetic characteristics of hemiparasitie Santalum album seedlings were studied. The superior host root exudates or several chemicals were screened to provide a scientific guidance for cultivating S. album seedlings.【Method】Under greenhouse conditions, we performed the pot experiment to determine whether root exudates (Acacia confusa, Bischofia polycarpa, Dalbergia odorifera, Dracontomelon duperrereanum and S. album) and haustorium-inducing chemicals (2,6-dimethoxy-p-benzoquinone (DMBQ), formononetin, quercetin and syringaldehyde) could promote the growth and root development of S. album seedlings. The growth indices (height, diameter and biomass), root morphology (total root length and root surface area), nutrient (N, P, K) contents, and photosynthetic characteristics (SPAD values, photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr)) of S. album seedlings were measured after a 3-month treatment.【Result】The height, shoot and root biomass of S. album seedlings exhibited the significantly greater growth when treated with Dalbergia odorifera root exudates, DMBQ and syringaldehyde. The total root length, root surface area and length of thin fine roots were significantly greater in S. album seedlings treated with 4 root exudates (except for B. polycarpa) and 4 chemicals than those of the control treatment. The exogenous signal substance could promote N, P and K absorption of S. album seedlings, especially for Dalbergia odorifera root exudate and DMBQ. Root exudates of Dalbergia odorifera and A. confusa, DMBQ and syringaldehyde induced significantly higher SPAD values. Dalbergia odorifera root exudate and 4 chemicals could induce significantly higher photosynthetic characteristics of S. album seedlings. The correlation analysis shows that there are significant and strong correlations between growth indices, physiology indices and root growth (except for thick fine root and coarse root length). Haustoria number of S. album seedlings are significantly correlated with the total the root length and root surface area, indicating that the haustorium development of S. album is closely related to root growth.【Conclusion】The application of root exudates of superior host and/or haustorium-inducing chemicals could effectively promote root development, nutrient absorption, and photoautotrophic capability of S. album seedlings. Our results provide insights into S. album nursery in south China.

关键词

外源信号物质 / 檀香 / 根系分泌物 / 根系形态 / 光合特性

Key words

exogenous signal substance / Santalum album / root exudates / root morphology / photosynthetic characteristics

引用本文

导出引用
李振双, 王倩, 朱媛, . 外源信号物质对檀香幼苗生长和光合特性的影响[J]. 南京林业大学学报(自然科学版). 2022, 46(6): 271-278 https://doi.org/10.12302/j.issn.1000-2006.202207037
LI Zhenshuang, WANG Qian, ZHU Yuan, et al. Effects of exogenous signal substances on growth and photosynthetic characteristics of Santalum album seedlings[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(6): 271-278 https://doi.org/10.12302/j.issn.1000-2006.202207037
中图分类号: S723   

参考文献

[1]
严小龙. 根系生物学原理与应用[M]. 北京: 科学出版社, 2007:1.
YAN X L. Biological principle and application of root system[M]. Beijing: Science Press, 2007:1.
[2]
史刚荣. 植物根系分泌物的生态效应[J]. 生态学杂志, 2004, 23(1):97-101.
SHI G R. Ecological effects of plant root exudates[J]. Chin J Ecol, 2004, 23(1):97-101.
[3]
BAIS H P, WEIR T L, PERRY L G, et al. The role of root exudates in rhizosphere interactions with plants and other organisms[J]. Annu Rev Plant Biol, 2006, 57:233-266.DOI:10.1146/annurev.arplant.57.032905.105159.
[4]
BAETZ U, MARTINOIA E. Root exudates:the hidden part of plant defense[J]. Trends Plant Sci, 2014, 19(2):90-98.DOI:10.1016/j.tplants.2013.11.006.
[5]
竺诗慧, 董廷发, 刘刚, 等. 桑树(Morus alba)幼苗根系分泌物对雌雄植株生长发育的影响[J]. 植物生理学报, 2016, 52(1):134-140.
ZHU S H, DONG T F, LIU G, et al. Effects of root exudates on the growth and development of male and female Morus alba seedlings[J]. Plant Physiol J, 2016, 52(1):134-140.DOI:10.13592/j.cnki.ppj.2015.0599.
[6]
CUI S K, WADA S, TOBIMATSU Y, et al. Host lignin composition affects haustorium induction in the parasitic plants Phtheirospermum japonicum and Striga hermonthica[J]. New Phytol, 2018, 218(2):710-723.DOI:10.1111/nph.15033.
[7]
TOMILOV A A, TOMILOVA N B, ABDALLAH I, et al. Localized hormone fluxes and early haustorium development in the hemiparasitic plant Triphysaria versicolor[J]. Plant Physiol, 2005, 138(3):1469-1480.DOI:10.1104/pp.104.057836.
[8]
YOSHIDA S, CUI S K, ICHIHASHI Y, et al. The haustorium,a specialized invasive organ in parasitic plants[J]. Annu Rev Plant Biol, 2016, 67:643-667.DOI:10.1146/annurev-arplant-043015-111702.
[9]
KOKLA A, MELNYK C W. Developing a thief:haustoria formation in parasitic plants[J]. Dev Biol, 2018, 442(1):53-59.DOI:10.1016/j.ydbio.2018.06.013.
[10]
ESTABROOK E M, YODER J I. Plant-plant communications:rhizosphere signaling between parasitic angiosperms and their hosts[J]. Plant Physiol, 1998, 116(1):1-7.DOI:10.1104/pp.116.1.1.
[11]
ICHIHASHI Y, KUSANO M, KOBAYASHI M, et al. Transcriptomic and metabolomic reprogramming from roots to haustoria in the parasitic plant,Thesium chinense[J]. Plant Cell Physiol, 2017, 59(4):729-738.DOI:10.1093/pcp/pcx200.
[12]
TESITEL J, TESITELOVÁ T, MINASIEWICZ J, et al. Mixotrophy in land plants:why to stay green?[J]. Trends Plant Sci, 2018, 23(8):656-659.DOI:10.1016/j.tplants.2018.05.010.
[13]
隋晓琳, 管开云, 李爱荣. 根部半寄生杂草甘肃马先蒿的危害与成因[C]// 第十二届全国杂草科学大会论文摘要集.太原, 2015:62.
[14]
OUYANG Y, ZHANG X H, CHEN Y L, et al. Growth,photosynthesis and haustorial development of semiparasitic Santalum album L.[J]. Trees, 2016, 30(1):317-328.DOI:10.1007/s00468-015-1303-3.
[15]
马国华, 何跃敏, 张静峰, 等. 檀香幼苗半寄生性初步研究[J]. 热带亚热带植物学报, 2005, 13(3):233-238.
MA G H, HE Y M, ZHANG J F, et al. Study on semi-parasitism of sandalwood seedlings[J]. J Trop Subtrop Bot, 2005, 13(3):233-238.DOI:10.3969/j.issn.1005-3395.2005.3.008.
[16]
LU J K, XU D P, KANG L H, et al. Host-species-dependent physiological characteristics of hemiparasite Santalum album in association with N2-fixing and non-N2-fixing hosts native to Southern China[J]. Tree Physiol, 2014, 34(9):1006-1017.DOI:10.1093/treephys/tpu073.
[17]
JIANG F, JESCHKE W D, HARTUNG W, et al. Does legume nitrogen fixation underpin host quality for the hemiparasitic plant Rhinanthus minor?[J]. J Exp Bot, 2008, 59(4):917-925.DOI:10.1093/jxb/ern015.
[18]
MENG S, MA H B, LI Z S, et al. Impacts of nitrogen on physiological interactions of the hemiparasitic Santalum album and its N2-fixing host Dalbergia odorifera[J]. Trees, 2021, 35(3):1039-1051.DOI:10.1007/s00468-021-02103-0.
[19]
RADOMILJAC A M. The influence of pot host species,seedling age and supplementary nursery nutrition on Santalum album Linn.(Indian sandalwood) plantation establishment within the Ord River Irrigation Area,Western Australia[J]. For Ecol Manag, 1998, 102(2/3):193-201.DOI:10.1016/S0378-1127(97)00158-8.
[20]
李化山, 汪金松, 法蕾, 等. 模拟氮沉降对油松幼苗生长的影响[J]. 应用与环境生物学报, 2013, 19(5):774-780.
LI H S, WANG J S, FA L, et al. Effects of simulated nitrogen deposition on seedling growth of Pinus tabulaeformis[J]. Chin J Appl Environ Biol, 2013, 19(5):774-780.DOI:10.3724/SP.J.1145.2013.00774.
[21]
PHOENIX G K, PRESS M C. Linking physiological traits to impacts on community structure and function:the role of root hemiparasitic Orobanchaceae (Ex-Scrophulariaceae)[J]. J Ecol, 2005, 93(1):67-78.DOI:10.1111/j.1365-2745.2004.00950.x.
[22]
SEEL W E, PARSONS A N, PRESS M C. Do inorganic solutes limit growth of the facultative hemiparasite Rhinanthus minor L in the absence of a host?[J]. New Phytol, 1993, 124(2):283-289.DOI:10.1111/j.1469-8137.1993.tb03818.x.
[23]
LI A R, LI Y J, SMITH S E, et al. Nutrient requirements differ in two Pedicularis species in the absence of a host plant:implication for driving forces in the evolution of host preference of root hemiparasitic plants[J]. Ann Bot, 2013, 112(6):1099-1106.DOI:10.1093/aob/mct179.
[24]
TOMILOV A, TOMILOVA N, YODER J I. In vitro haustorium development in roots and root cultures of the hemiparasitic plant Triphysaria versicolor[J]. Plant Cell Tissue Organ Cult, 2004, 77(3):257-265.DOI:10.1023/B:TICU.0000018392.62980.41.
[25]
李孙玲, 景跃波, 卯吉华, 等. 外源酚酸类物质对檀香幼苗生长和光合特性的影响[J]. 西部林业科学, 2020, 49(5):104-108.
LI S L, JING Y B, MAO J H, et al. Effects of exogenous phenolic acids on growth and photosynthesis characteristics of Santalum album seedlings[J]. J West China For Sci, 2020, 49(5):104-108.DOI:10.16473/j.cnki.xblykx1972.2020.05.016.
[26]
董玉峰, 朱婉芮, 丁昌俊, 等. 杨树不同根序细根形态对酚酸的响应[J]. 南京林业大学学报(自然科学版), 2020, 44(1):39-46.
DONG Y F, ZHU W R, DING C J, et al. Root order-dependent responses of poplar fine root morphology to phenolic acids[J]. J Nanjing For Univ (Nat Sci Ed),2020, 44(1):39-46.DOI:10.3969/j.issn.1000-2006.201807055.
[27]
马兴立. 不同植物生长调节物质对玉米生长发育的影响[D]. 郑州: 河南农业大学, 2010.
MA X L. Effects of different plant growth regulators on the growth and development of maize (Zea mays L.)[D]. Zhengzhou: Henan Agricultural University, 2010.
[28]
胡举伟, 朱文旭, 许楠, 等. 外源酚酸对桑树幼苗生长和光合特性的影响[J]. 草业科学, 2013, 30(9):1394-1400.
HU J W, ZHU W X, XU N, et al. Effects of exogenous phenolic acids on growth and photosynthesis characteristics of mulberry seedlings[J]. Pratacultural Sci, 2013, 30(9):1394-1400.
[29]
陈龙池, 廖利平, 汪思龙, 等. 香草醛和对羟基苯甲酸对杉木幼苗生理特性的影响[J]. 应用生态学报, 2002, 13(10):1291-1294.
CHEN L C, LIAO L P, WANG S L, et al. Effect of vanillin and P-hydroxybenzoic acid on physiological characteristics of Chinese fir seedlings[J]. Chin J Appl Ecol, 2002, 13(10):1291-1294.
[30]
蒋铮, 于倩楠, 乔明锋, 等. 云杉幼树根系分泌物对2种草本植物种子萌发和幼苗生长的影响[J]. 林业科学, 2019, 55(6):160-166.
JIANG Z, YU Q N, QIAO M F, et al. Effects of root exudates from Picea asperata seedlings on the seed germination and seedling growth of two herb species[J]. Sci Silvae Sin, 2019, 55(6):160-166.DOI:10.11707/j.1001-7488.20190619.
[31]
付景, 陈露, 黄钻华, 等. 超级稻叶片光合特性和根系生理性状与产量的关系[J]. 作物学报, 2012, 38(7):1264-1276.
FU J, CHEN L, HUANG Z H, et al. Relationship of leaf photosynthetic characteristics and root physiological traits with grain yield in super rice[J]. Acta Agron Sin, 2012, 38(7):1264-1276.DOI:10.3724/SP.J.1006.2012.01264.

基金

国家自然科学基金项目(31722012)
国家自然科学基金项目(31670636)

编辑: 吴祝华
PDF(4219 KB)

Accesses

Citation

Detail

段落导航
相关文章

/