南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (6): 41-50.doi: 10.12302/j.issn.1000-2006.202206036
所属专题: 南京林业大学120周年校庆特刊
李梅1,4(), 施季森2, 罗建中3,4,*(), 甘四明1,4,*()
收稿日期:
2022-06-20
修回日期:
2022-09-07
出版日期:
2022-11-30
发布日期:
2022-11-24
通讯作者:
罗建中,甘四明
基金资助:
LI Mei1,4(), SHI Jisen2, LUO Jianzhong3,4,*(), GAN Siming1,4,*()
Received:
2022-06-20
Revised:
2022-09-07
Online:
2022-11-30
Published:
2022-11-24
Contact:
LUO Jianzhong,GAN Siming
摘要:
桃金娘科(Myrtaceae)桉属(Eucalyptus)、杯果木属(Angophora)和伞房属(Corymbia)树种统称桉树,引入我国已有130余年的历史,是重要的工业用材林树种。我国桉树遗传育种研究始于20世纪60年代的种子园建设和70年代后期的种源试验,一些技术显著促进了其进程,主要有:①早期的种子园技术促进了无性繁殖困难树种的有性扩繁;②20世纪90年代兴起的扦插和组织培养技术推动了优良无性系选育与应用;③20世纪90年代末分子标记技术开启了我国桉树分子育种研究的新纪元;④21世纪初转基因技术为品种创制提供了崭新的手段;⑤刚尝试的基因组编辑技术展现了巨大的应用潜力。桉树育种策略和种质资源是其遗传育种研究的基础,已对一些树种制定了育种策略和育种计划,兼顾纯种内轮回选择和杂种无性系的选育,主要经济性状包括材积生长、木材密度、抗病虫和抗风等;累计已收集了近200个树种3 000余个家系的种质资源。我国桉树遗传育种研究已取得显著进展,主要包括:①几个主要树种的轮回选择和世代改良,仅尾叶桉(E. urophylla)进入了第3个世代;②杂交育种的成效显著,培育了目前仍主栽的DH32-29和DH33-27等优良杂种无性系;③无性系育种结合无性繁殖技术(尤其是组织培养)的研发,极大地推动了无性系林业的发展;④开发了多种分子标记,包括基于新一代测序技术的标记,并基于分子标记利用连锁作图和关联分析的方法,在尾叶桉等6个树种中检测了与生长、材性和/或抗逆等性状相关的基因组位点;⑤已对逆境响应、激素和木材形成等相关的功能基因进行了克隆和表达分析,一些功能基因显示了较好的育种应用潜力;⑥已优化遗传转化体系,获得了转基因植株,并尝试了基因组编辑的可行性。但是,我国桉树遗传育种研究仍面临诸多挑战,如基因型×环境互作的复杂性和高质量基因组/泛基因组的缺乏,种质资源流失,新无性系缺乏,尚待从头克隆和鉴定具有育种价值的优异基因,基因组选择实用性有待探索,遗传转化率需进一步提高等。桉树遗传育种研究对促进我国林业生产的意义是显著的,将有望在高世代改良、种质资源的长期评价、杂种优势的机制与利用、基因组选择的有效应用和转基因与基因组编辑技术等方面取得突破。
中图分类号:
李梅,施季森,罗建中,等. 我国桉树遗传育种研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 41-50.
LI Mei, SHI Jisen, LUO Jianzhong, GAN Siming. Progresses of eucalypt genetics and breeding studies in China[J].Journal of Nanjing Forestry University (Natural Science Edition), 2022, 46(6): 41-50.DOI: 10.12302/j.issn.1000-2006.202206036.
表1
我国现存的主要桉树种质资源"
序号 No. | 树种 species | 种植年份 planting year | 种源数量 number of provenances | 家系数量 number of families | 保存地点 planting site |
---|---|---|---|---|---|
1 | 尾叶桉E. urophylla | 1988—1995 2008及2020 | 38 20 | 590 194 | 广西崇左和广东湛江 广东肇庆[ |
2 | 巨桉E. grandis | 1987—2010 2009及2020 | 20 20 | 380 176 | 广西崇左和福建三明 广东肇庆[ |
3 | 粗皮桉E. pellita | 1989—2004 | 32 | 410 | 广西崇左和广东湛江 |
4 | 细叶桉E. tereticornis | 1987—2012 | 43 | 320 | 广西崇左和广东湛江 |
5 | 赤桉E. camaldulensis | 2000—2012 | 31 | 280 | 广西崇左和广东湛江 |
6 | 大花序桉E. cloeziana | 2004—2009 | 17 | 115 | 广西玉林[ |
7 | 柠檬桉C. citriodora | 2015 | 10 | 120 | 广东湛江[ |
8 | 邓恩桉E. dunnii | 1991—2012 | 20 | 250 | 广西柳州、福建三明和云南昆明 |
9 | 蓝桉E. globulus | 1990—2014 | 12 | 270 | 云南昆明和楚雄 |
10 | 史密斯桉E. smithii | 2005—2012 | 10 | 191 | 云南昆明和楚雄 |
11 | 本沁桉E. benthamii 多利桉E. dorrigoensis | 2015 | 8 | 110 | 云南昆明 |
表2
开展连锁和关联分析的桉树主要性状"
树种 species | 生长性状 growth trait | 木材性质 wood property | 抗病虫 resistance to pest and disease | 耐逆境 tolerance of abiotic stress |
---|---|---|---|---|
尾叶桉E. urophylla | 根长和不定根数量等[ 树高和胸径[ | 木材基本密度、纤维素含量、半纤维素含量、木素含量和木素S/G等[ | ||
细叶桉E. tereticornis | 根长和不定根数量等[ 树高和胸径[ | 木材基本密度、纤维素含量、半纤维素含量、木素含量和木素S/G等[ | 枝瘿姬小蜂 (Leptocybe invasa)[ | |
巨桉E. grandis | 枝瘿姬小蜂[ | |||
赤桉E. camaldulensis | 树高、胸径和材积[ | 风害[ | ||
大花序桉E. cloeziana | 树高和胸径[ | 木材基本密度和弹性模量[ | ||
粗皮桉E. pellita | 胸径[ | 抽提物和木质素含量及纸浆得率[ |
[1] | HILL K D, JOHNSON L A S. Systematic studies in the eucalypts-7: a revision of the bloodwoods, genus Corymbia (Myrtaceae)[J]. Telopea, 1995, 6(2/3): 185-504. DOI:10.7751/telopea19953017. |
[2] | PRYOR L D, WILLIAMS E R, GUNN B V. A morphometric analysis of Eucalyptus urophylla and related taxa with description of two new species[J]. Aust Syst Bot, 1995, 8(1): 57-70. DOI:10.1071/SB9950057. |
[3] | PRYOR L D. Biology of Eucalypts[M]. London: Edward Arnold, 1976: 82. |
[4] | FAO. Eucalypts for planting[R]. Rome: Food and Agricultural Organization of the United Nations, 1979: 51-144. |
[5] | 祁述雄. 中国桉树[M]. 2版. 北京: 中国林业出版社, 2002: 56-57, 90. |
QI S X. Eucalyptus in China[M]. 2nd ed. Beijing: China Forestry Publishing House, 2002: 56-57, 90. | |
[6] | 国家林业和草原局. 中国森林资源报告(2014-2018)[M]. 北京: 中国林业出版社, 2019: 366. |
National Forestry and Grassland Administration. China forest resources report (2014-2018)[M]. Beijing: China Forestry Publishing House, 2019: 366. | |
[7] | 甘四明, 施季森, 白嘉雨, 等. 尾叶桉和细叶桉无性系的RAPD指纹图谱构建[J]. 南京林业大学学报(自然科学版), 1999, 23(1): 11-14. |
GAN S M, SHI J S, BAI J Y, et al. RAPD fingerprints of clones of Eucalyptus urophylla S T Blake and Eucalyptus tereticornis Smith[J]. J Nanjing For Univ (Nat Sci Ed), 1999, 23(1): 11-14. DOI:10.3969/j.issn.1000-2006.1999.01.003. | |
[8] | NIKLES D G. A breeding strategy for genetic improvement of selected tropical eucalypts at Dongmen State Forest Farm[R]. Dongmen Town, Guangxi: Dongmen State Forest Farm, 1987. |
[9] | 范春节, 曾炳山, 裘珍飞, 等. 尾赤桉DH201-2遗传转化体系建立的研究[J]. 浙江林业科技, 2009, 29(4): 15-20. |
FAN C J, ZENG B S, QIU Z F, et al. Establishment of genetic transformation of Eucalyptus urophylla × E. camaldulensis clone DH201-2[J]. J Zhejiang For Sci, 2009, 29(4): 15-20. | |
[10] | 陈博雯, 肖玉菲, 李军集, 等. EuCAD基因CRISPR/Cas9敲除载体构建及基因编辑效果验证[J/OL]. 分子植物育种, (2021-12-11)[2022-05-06]. http://kns.cnki.net/kcms/detail/46.1068.S.20211209.0443.006.html. |
CHEN B W, XIAO Y F, LI J J, et al. Construction and verification of CRISPR/Cas9 knockout vector of EuCAD gene[J]. Mol Plant Breed,(2021-12-11)(2022-05-06). http://kns.cnki.net/kcms/detail/46.1068.S.20211209.0443.006.html. | |
[11] | TURNBULL J W. Development of sustainable forestry plantations in China: a review[R]. Canberra: Australian Centre for International Agricultural Research, 2007. |
[12] | 李淡清. 蓝桉、直干桉优树选择研究[J]. 林业科学, 1990, 26(2): 167-174. |
LI D Q. A study on plus tree selection in Eucalyptus globulus Labill and Eucalyptus maidenii F V M[J]. Sci Silvae Sin, 1990, 26(2): 167-174. | |
[13] | 张翰华, 潘永言. 雷林1号桉子代林调查研究[J]. 桉树科技, 1982, (3): 35-48. |
ZHANG H H, PAN Y Y. Investigation on progeny trials of Eucalyptus leizhou No.1[J]. Eucalypt Sci Technol, 1982, (3): 35-48. | |
[14] | ELDRIDGE K G. Breeding strategy for eucalypts in southern China[R]. Beijing: World Bank Loan Project Management Centre, China National Afforestation Project, 1991. |
[15] | ARNOLD R J, 罗建中, 谢耀坚. 中国桉树育种联盟遗传改良计划[R]. 湛江: 中国桉树育种联盟, 2010. |
ARNOLD R J, LUO J Z, XIE Y J. Genetic improvement plan for China Eucalypt Breeding Alliance[R]. Zhanjiang: China Eucalypt Breeding Alliance, 2010. | |
[16] | ELDRIDGE K G, DAVIDSON J, HARWOOD C, et al. Eucalypt domestication and Breeding[M]. Oxford: Oxford University Press Inc, 1993: 162-180. |
[17] | 刘德杰. 广西东门林场桉树无性系的研究、发展及生产[J]. 广西林业科学, 2001(S1): 28-32. |
LIU D J. Research, development and production on eucalypt clones in Guangxi Dongmen forest farm[J]. Guangxi For Sci, 2001(S1): 28-32. DOI:10.3969/j.issn.1006-1126.2001.z1.008. | |
[18] | VAN BUEREN M. Eucalypt tree improvement in China. Impact assessment series report No. 30[R]. Canberra: Australian Centre for International Agricultural Research, 2004. |
[19] | 罗建中. 我国耐寒桉树的种质资源及其遗传改良[J]. 桉树科技, 2006, 23(1): 24-31. |
LUO J Z. Cold-tolerant eucalypt germplasm resources and their genetic improvement in China[J]. Eucalypt Sci Technol, 2006, 23(1): 24-31. DOI:10.3969/j.issn.1674-3172.2006.01.006. | |
[20] | 刘德浩, 张卫华, 张方秋. 尾叶桉核心种质初步构建[J]. 华南农业大学学报, 2014, 35(6): 89-93. |
LIU D H, ZHANG W H, ZHANG F Q. Preliminary construction of core collection of Eucalyptus urophylla germplasm[J]. J South China Agri Univ, 2014, 35(6): 89-93. DOI:10.7671/j.issn.1001-411X.2014.06.017. | |
[21] | 刘德浩, 张卫华, 张方秋, 等. 不同种源巨桉幼林生长性状变异与早期评价[J]. 西南林业大学学报, 2015, 35(4): 91-94. |
LIU D H, ZHANG W H, ZHANG F Q, et al. Growth traits variation analysis and early evaluation of Eucalyptus grandis seedling of different provenance[J]. J Southwest For Univ, 2015, 35(4): 91-94. DOI:10.11929/j.issn.2095-1914.2015.04.016. | |
[22] | LI C, WENG Q, CHEN J B, et al. Genetic parameters for growth and wood mechanical properties in Eucalyptus cloeziana F. Muell.[J]. New For, 2017, 48(1): 33-49. DOI:10.1007/s11056-016-9554-4:1-17. |
[23] | 陈小中, 张临萍, 陈炙, 等. 大花序桉优树家系苗期性状的遗传变异[J]. 四川林业科技, 2020, 41(2): 8-14. |
CHEN X Z, ZHANG L P, CHEN J, et al. Genetic variation and selection of seedling traits in superior Eucalyptus cloeziana families[J]. J Sichuan For Sci Technol, 2020, 41(2): 8-14. DOI:10.12172/201912120001. | |
[24] | 刘思汝, 林彦, 刘晓华, 等. 柠檬桉群体遗传多样性和遗传结构的SSR分析[J]. 分子植物育种, 2016, 14(7): 1923-1929. |
LIU S R, LIN Y, LIU X H, et al. Genetic diversity and genetic structure of Corymbia citriodora based on SSR analysis[J]. Mol Plant Breed, 2016, 14(7): 1923-1929. DOI:10.13271/j.mpb.014.001923. | |
[25] | 谢秋兰, 林彦, 王楚彪, 等. 柠檬桉在中国湿热地区的早期生长和抗病性遗传变异[J]. 分子植物育种, 2017, 15(8): 3278-3285. |
XIE Q L, LIN Y, WANG C B, et al. Genetic variation in early growth and disease resistance in Corymbia citriodora in humid subtropical China[J]. Mol Plant Breed, 2017, 15(8): 3278-3285. DOI:10.13271/j.mpb.015.003278. | |
[26] | 王豁然. 澳大利亚阔叶树引种与栽培的研究——中澳合作研究项目[J]. 林业科学研究, 1988, 1(1): 112-113. |
WANG H R. Introduction and cultivation experiments for Australian broad-leaved tree species: China-Australia cooperative project[J]. For Res, 1988, 1(1): 112-113. | |
[27] | WANG H, ZHENG Y, ZANG D, et al.Provenance variation in growth and wood properties of E. grandis in China[C]// BROWN A G. Australian tree species research in China. ACIAR Proceedings No. 48. Canberra:Australian Centre for International Agricultural Research, 1994: 105-107. |
[28] | WEI X, BORRALHO N M G. Genetic control of wood basic density and bark thickness and their relationships with growth traits of Eucalyptus urophylla in South East China[J]. Silvae Genet, 1997, 46(4): 245-250. |
[29] | LUO J. Variation in growth and wood density of Eucalyptus urophylla[C]// TURNBULL J W. Eucalypts in Asia. ACIAR Proceedings No. 111. Canberra:Australian Centre for International Agricultural Research, 2003: 94-100. |
[30] | XU J, WU K, WU J, et al. Genetic variation in a provenance trial of Eucalyptus tereticornis[C]// BROWN A G. Australian tree species research in China. ACIAR Proceedings No. 48. Canberra:Australian Centre for International Agricultural Research, 1994: 123-126. |
[31] | LUO J, ARNOLD R J, AKEN K. Genetic variation in growth and typhoon resistance in Eucalyptus pellita in southwestern China[J]. Aust For, 2006, 69(1): 38-47. DOI:10.1080/00049158.2006.10674986. |
[32] | ZANG D, WANG H, YOU Y. Performance and selection of a 4-year Eucalyptus globulus seedling seed orchard in Yunnan Province, China[C]// POTTS B M, BORRALHO N M G, REID J B, et al. Eucalypt plantations: improving fibre yield and quality. Proceedings of CRCTHF-IUFRO conference. Hobart: CRC for Temperate Hardwood Forestry, 1995: 226-229. |
[33] | 罗建中, ARNOLD R, 项东云, 等. 邓恩桉生长、木材密度和树皮厚度的遗传变异研究[J]. 林业科学研究, 2009, 22(6): 758-764. |
LUO J Z, ARNOLD R, XIANG D Y, et al. Genetic variation in growth, wood density and bark thickness of Eucalyptus dunnii[J]. For Res, 2009, 22(6): 758-764. | |
[34] | LUO J, ARNOLD R, LU W, et al. Genetic variation in Eucalyptus camaldulensis and E. tereticornis for early growth and susceptibility to the gall wasp Leptocybe invasa in China[J]. Euphytica, 2014, 196(3): 397-411. DOI:10.1007/s10681-013-1042-8. |
[35] | LU W, ROGER R, ZHANG L, et al. Genetic diversity and structure through three cycles of a Eucalyptus urophylla S.T.Blake breeding program[J]. Forests, 2018, 9(7): 372. DOI:10.3390/f9070372. |
[36] | LUO J, ZHOU G, WU B, et al. Genetic variation and age-age correlations of Eucalyptus grandis at Dongmen Forest Farm in southern China[J]. Aust For, 2010, 73(2): 67-80. DOI:10.1080/00049158.2010.10676312. |
[37] | 刘晓华, 罗建中, 卢万鸿, 等. 两个连续世代粗皮桉生长与抗风能力遗传特征[J]. 分子植物育种, 2017, 15(12): 5103-5111. |
LIU X H, LUO J Z, LU W H, et al. Genetic characteristics in 2 consecutive generations’ Eucalyptus pellita for growth and typhoon resistance[J]. Mol Plant Breed, 2017, 15(12): 5103-5111. DOI:10.13271/j.mpb.015.005103. | |
[38] | 苏兴仁, 吴世明, 韦民, 等. 广西柳窿杂种桉选育研究初报[J]. 桉树科技协作动态, 1982(4): 24-28. |
SU X R, WU S M, WEI M, et al. Preliminary study on Guangxi’s Eucalyptus saligna × E. exserta hybrid breeding[J]. Eucalypt Sci Technol, 1982(4): 24-28. | |
[39] | 项东云, 郑白, 周维, 等. 广西桉树育种研究概述[J]. 广西林业科学, 1999, 28(2): 71-80. |
XIANG D Y, ZHENG B, ZHOU W, et al. Review on eucalypt breeding in Guangxi region[J]. Guangxi For Sci Technol, 1999, 28(2): 71-80. DOI:10.19692/j.cnki.gfs.1999.02.004. | |
[40] | HE X, LI F, LI M, et al. Quantitative genetics of cold hardiness and growth in Eucalyptus as estimated from E. urophylla × E. tereticornis hybrids[J]. New For, 2012, 43(3): 383-394. DOI:10.1007/s11056-011-9287-3. |
[41] | GAN S, LI M, LI F, et al. Genetic analysis of growth and susceptibility to bacterial wilt (Ralstonia solanacearum) in Eucalyptus by interspecifific factorial crossing[J]. Silvae Genet, 2004, 53(5/6): 254-258. DOI:10.1515/sg-2004-0047. |
[42] | 罗建中, 谢耀坚, 曹加光, 等. 2年生桉树杂交种生长与抗风的遗传变异研究[J]. 草业学报, 2009, 18(6): 91-97. |
LUO J Z, XIE Y J, CAO J G, et al. Genetic variation in 2-year eucalypt hybrids’ growth and typhoon resistance[J]. Acta Prataculturae Sin, 2009, 18(6): 91-97. | |
[43] | 翁启杰, 赖秋香, 李发根, 等. 尾叶桉×邓恩桉早期生长和耐寒性的遗传分析[J]. 南京林业大学学报(自然科学版), 2015, 39(5): 33-38. |
WENG Q J, LAI Q X, LI F G, et al. Genetic analysis on early growth and cold tolerance of E. urophylla × E. dunnii hybrids[J]. J Nanjing For Univ (Nat Sci Ed), 2015, 39(5): 33-38. DOI:10.3969/j.issn.1000-2006.2015.05.006. | |
[44] | POTTS B M, DUNGEY H. Interspecific hybridization of Eucalyptus: key issues for breeders and geneticists[J]. New For, 2004, 27(2): 115-138. DOI:10.1023/A:1025021324564. |
[45] | BAI J, XU J, GAN S. Genetic improvement of tropical eucalypts in China[C]// TURNBULL J W. Eucalypts in Asia. ACIAR Proceedings No. 111. Canberra:Australian Centre for International Agricultural Research, 2003: 64-70. |
[46] | 陈升侃. 尾叶桉×细叶桉重要经济性状的遗传变异与关联分析[D]. 北京: 中国林业科学研究院, 2018. |
CHEN S K. Genetic variation and association analysis in important economic traits in Eucalyptus urophylla × E. tereticornis[D]. Beijing: Chinese Academy of Forestry, 2018. | |
[47] | LI F, GAN S, ZHANG Z, et al. Microsatellite-based genotyping of the commercial Eucalyptus clones cultivated in China[J]. Silvae Genet, 2011, 60(5): 216-223. DOI:10.1515/sg-2011-0029. |
[48] | LUO J, ARNOLD R J, CAO J, et al. Variation in pulp wood traits between eucalypt clones across sites and implications for deployment strategies[J]. J Trop For Sci, 2012, 24(1): 70-82. |
[49] | 任世奇, 罗建中, 彭彦, 等. 桉树无性系的单板出材率与价值研究[J]. 草业学报, 2010, 19(6): 46-54. |
REN S Q, LUO J Z, PENG Y, et al. A study on veneer recovery ratio and value of eucalypt clones[J]. Acta Prataculturae Sin, 2010, 19(6): 46-54. | |
[50] | 沈文生, 黄乃秀. 桉树种间、种内、无性系抗青枯病选育的新技术[J]. 中国野生植物资源, 2000, 19(2): 13-15. |
SHEN W S, HUANG N X. A new technique on anti-bacteria wilt variety selecting from eucalypt inter and intra-species clones[J]. Chin Wild Plant Resour, 2000, 19(2): 13-15. | |
[51] | 朱成庆. 雷州半岛桉树无性系抗风性的研究[J]. 林业科学研究, 2006, 19(4): 532-536. |
ZHU C Q. Study on the wind-resistance traits of Eucalyptus clones in Leizhou Peninsula[J]. For Res, 2006, 19(4): 532-536. | |
[52] | 李宝福. 福建中亚热带7个桉树无性系多点造林对比试验研究[J]. 林业科学研究, 2007, 20(2): 181-187. |
LI B F. Contratest investigation on seven clones of Eucalyptus multiplace forestation in middle-subtropical Fujian[J]. For Res, 2007, 20(2): 181-187. | |
[53] | YANG H, WENG Q, LI F, et al. Genotypic variation and genotype-by-environment interactions in growth and wood properties in a cloned Eucalyptus urophylla × E. tereticornis family in southern China[J]. For Sci, 2018, 64(3): 225-232. DOI:10.1093/forsci/fxx011. |
[54] | GAN S, SHI J, LI M, et al. Moderate-density molecular maps of Eucalyptus urophylla S. T. Blake and E. tereticornis Smith genomes based on RAPD markers[J]. Genetica, 2003, 118(1): 59-67. DOI:10.1023/A:1022966018079. |
[55] | YU X, GUO Y, ZHANG X, et al. Integration of EST-CAPS markers into genetic maps of Eucalyptus urophylla and E. tereticornis and their alignment with E. grandis genome sequence[J]. Silvae Genet, 2012, 61(6): 247-255. DOI:10.1515/sg-2012-0031. |
[56] | YU X, ZHOU C, LI F, et al. A novel set of EST-InDel markers in Eucalyptus L’Hérit.: polymorphisms, cross-species amplification, physical positions and genetic mapping[J]. Mol Breed, 2016, 36(7): 104. DOI:10.1007/s11032-016-0523-6. |
[57] | 周长品, 李发根, 翁启杰, 等. 2010. PCR产物直接测序和混合克隆测序进行桉树EST-SSR标记开发[J]. 分子植物育种, 2010, 8(1): e0001. |
ZHOU C P, LI F G, WENG Q J, et al. Comparison between direct sequencing and pool-cloning-based sequencing of PCR products in EST-SSR marker development in Eucalyptus[J]. Fenzi Zhiwu Yuzhong, 2010, 8(1): e0001 DOI:10.5376/mpb.cn.2010.08.0001. | |
[58] | HE X, WANG Y, LI F, et al. Development of 198 novel EST-derived microsatellites in Eucalyptus (Myrtaceae)[J]. Am J Bot, 2012, 99(4): e134-148. DOI:10.3732/ajb.1100442. |
[59] | ZHOU C, HE X, LI F, et al. Development of 240 novel EST-SSRs in Eucalyptus L’Hérit.[J]. Mol Breed, 2014, 33(1): 221-225. DOI:10.1007/s11032-013-9923-z. |
[60] | 于晓丽. 桉树高密度遗传图谱构建及生长和材性相关QTL解析[D]. 北京: 中国林业科学研究院, 2015. |
YU X L. Construction of dense genetic maps in Eucalyptus and detection of quantitative trait loci (QTLs) for growth and wood property traits[D]. Beijing: Chinese Academy of Forestry, 2015. | |
[61] | LI F, ZHOU C, WENG Q, et al. Comparative genomics analyses reveal extensive chromosome colinearity and novel quantitative trait loci in Eucalyptus[J]. PLoS ONE, 2015, 10: e0145144. DOI:10.1371/journal.pone.0145144. |
[62] | 王楚彪. 基于全基因组重测序的多世代粗皮桉遗传变异研究及材性性状关联分析[D]. 北京: 中国林业科学研究院, 2021. |
WANG C B. Genetic variation analysis and wood traits association study of multi-generation Eucalyptus pellita based on whole genome resequencing[D]. Beijing: Chinese Academy of Forestry, 2021. | |
[63] | 于晓丽, 李发根, 翁启杰, 等. 桉树扦插生根和生长性状的QTL定位[J]. 林业科学研究, 2011, 24(2): 200-204. |
YU X L, LI F G, WENG Q J, et al. Detection of quantitative trait loci related with rooting ability of cuttings and growth of Eucalyptus[J]. For Res, 2011, 24(2): 200-204. DOI:10.13275/j.cnki.lykxyj.2011.02.018. | |
[64] | 朱显亮. 利用GBS开展尾细桉杂种生长、材性QTL定位及候选功能基因研究[D]. 北京: 中国林业科学研究院, 2021. |
ZHU X L. QTL mapping and candidate functional gene identification of growth and wood properties in Eucalyptus urophylla × E. tereticornis hybrids by GBS[D]. Beijing: Chinese Academy of Forestry, 2021. | |
[65] | 宋志姣, 翁启杰, 周长品, 等. 细叶桉(Eucalyptus tereticornis)早期生长的SSR标记关联分析[J]. 分子植物育种, 2016, 14(1): 195-203. |
SONG Z J, WENG Q J, ZHOU C P, et al. SSR markers associated with early growth in Eucalyptus tereticornis[J]. Mol Plant Breed, 2016, 14(1): 195-203. DOI:10.13271/j.mpb.014.000195. | |
[66] | ZHANG M, ZHOU C, SONG Z, et al. The first identification of genomic loci in plants associated with resistance to galling insects: a case study in Eucalyptus L’Hér. (Myrtaceae)[J]. Sci Rep, 2018, 8: 2319. DOI:10.1038/s41598-018-20780-9. |
[67] | 尚秀华, 张沛健, 谢耀坚, 等. 赤桉抗风和生长性状的SSR关联分析[J]. 南京林业大学学报(自然科学版), 2018, 42(4): 97-105. |
SHANG X H, ZHANG P J, XIE Y J, et al. SSR association analysis of Eucalyptus camaldulensis wind resistance and growth traits[J]. J Nanjing For Univ (Nat Sci Ed), 2018, 42(4): 97-105. DOI:10.3969/j.issn.1000-2006.201711019. | |
[68] | ZHOU C, WANG L, WENG Q, et al. Association of microsatellite markers with growth and wood mechanical traits in Eucalyptus cloeziana F. Muell. (Myrtaceae)[J]. Ind Crop Prod, 154: 112702. DOI:10.1016/j.indcrop.2020.112702. |
[69] | 王京京, 童再康, 黄程前, 等. 巨桉EgrCBF3基因的克隆与逆境响应表达分析[J]. 西北农林科技大学学报(自然科学版), 2013, 41(7): 113-118. |
WANG J J, TONG Z K, HUANG C Q, et al. Isolation and expression analysis under stress of EgrCBF3 in Eucalyptus grandis[J]. J Northwest A&F Univ (Nat Sci Ed), 2013, 41(7): 113-118. | |
[70] | 魏晓玲, 程龙军, 窦锦青, 等. 巨桉EgrDREB2A基因结构及表达特性分析[J]. 林业科学, 2015, 51(2): 80-90. |
WEI X L, CHENG L J, DOU J Q, et al. The structure and expression characteristics of EgrDREB2A gene in Eucalyptus grandis[J]. Sci Silvae Sin, 2015, 51(2): 80-90. DOI:10.11707/j.1001-7488.20150210. | |
[71] | WANG S, WEI X L, CHENG L J, et al. Identification of a C2H2-type zinc finger gene family from Eucalyptus grandis and its response to various abiotic stresses[J]. Biol Plant, 58(2): 385-390. DOI:10.1007/s10535-014-0399-4. |
[72] | ZHANG J, WU J, GUO M, et al. Genome-wide characterization and expression profiling of Eucalyptus grandis HD-Zip gene family in response to salt and temperature stress[J]. BMC Plant Biol, 2020, 20: 451. DOI:10.1186/s12870-020-02677-w. |
[73] | DAI J, SUN J, PENG W, et al. FAR1/FHY3 transcription factors positively regulate the salt and temperature stress responses in Eucalyptus grandis[J]. Front Plant Sci, 2022, 13: 883654. DOI:10.3389/fpls.2022.883654. |
[74] | FAN C, YAO H, QIU Z, et al. Genome-wide analysis of Eucalyptus grandis WRKY genes family and their expression profiling in response to hormone and abiotic stress treatment[J]. Gene, 2018, 678: 38-48. DOI:10.1016/j.gene.2018.08.003. |
[75] | FAN C, GUO G, YAN H, et al. Characterization of Brassinazole resistant (BZR) gene family and stress induced expression in Eucalyptus grandis[J]. Physiol Mol Biol Plant, 2018, 24(5): 821-831. DOI:10.1007/s12298-018-0543-2. |
[76] | YAN H, WANG Y, HU B, et al. Genome-wide characterization, evolution, and expression profiling of VQ gene family in response to phytohormone treatments and abiotic stress in Eucalyptus grandis[J]. Int J Mol Sci, 2019, 20(7): 1765. DOI:10.3390/ijms20071765. |
[77] | LIU G, XIE Y, SHANG X, et al. Expression patterns and gene analysis of the cellulose synthase gene superfamily in Eucalyptus grandis[J]. Forests, 2021, 12: 1254. DOI:10.3390/f12091254. |
[78] | ZHANN, SHANG X, WANG Z, et al. Screening cellulose synthesis related genes of EgrEXP and EgrHEX in Eucalyptus grandis[J]. Gene, 2022, 824: 146396. DOI:10.1016/j.gene.2022.146396. |
[79] | CHEN B W, XIAO Y F, LI J J, et al. Identification of the CAD gene from Eucalyptus urophylla GLU4 and its functional analysis in transgenic tobacco[J]. Genet Mol Res, 2016, 15(4): gmr15049062. DOI:10.4238/gmr15049062. |
[80] | 陈博雯, 盖颖, 蒋湘宁. 尾叶桉GLU4肉桂酰-辅酶A还原酶基因克隆及原核表达[J]. 中南林业科技大学学报, 2014, 34(11): 71-76, 97. |
CHEN B W, GAI Y, JIANG X N. Cloning and prokaryotic expression of cinnamoyl Co-A reductase of Eucalyptus urophylla clone GLU4[J]. J Central South Univ For & Technol, 2014, 34(11): 71-76, 97. | |
[81] | 陈博雯, 潘俊霞, 蔡文侠, 等. 尾叶桉GLU4中4-香豆酰辅酶A连接酶基因克隆及原核表达[J]. 广东农业科学, 2014, 41(12): 150-155. |
CHEN B W, PAN J X, CAI W X, et al. Gene cloning and prokaryotic expression of 4-coumarate: coenzyme A ligase in Eucalyptus urophylla clone GLU4[J]. Guangdong Agri Sci, 2014, 41(12): 150-155. | |
[82] | 陈博雯, 刘海龙, 肖玉菲, 等. 尾叶桉COMT和CCoAOMT基因定向调控木质素单体合成的烟草转化研究[J]. 中国生物工程杂志, 2018, 38(3): 24-32. |
CHEN B W, LIU H L, XIAO Y F, et al. Directional regulation of lignin monomer synthesis in tobacco by using COMT gene and CCo-AOMT gene of Eucalyptus urophylla[J]. China Biotechnol, 2018, 38(3): 24-32. DOI:10.13523/j.cb.20180304. | |
[83] | 郭利军, 曾炳山, 刘英. 根癌农杆菌介导的巨桉Eg5高效遗传转化体系建立[J]. 植物学报, 2013, 48(1): 87-93. |
GUO L J, ZENG B S, LIU Y. Agrobacterium-mediated high-efficient transformation of Eucalyptus grandis clone Eg5[J]. Chin Bull Bot, 2013, 48(1): 87-93. DOI:10.3724/SP.J.1259.2013.00087. | |
[84] | OUYANG L J, LI L M. Effects of an inducible aiiA gene on disease resistance in Eucalyptus urophylla × Eucalyptus grandis[J]. Transgenic Res, 2016, 25(4): 441-452. DOI:10.1007/s11248-016-9940-x. |
[85] | WANG X, LUO P, QIU Z, et al. Adventitious bud regeneration and agrobacterium tumefaciens-mediated genetic transformation of Eucalyptus urophylla × E. tereticornis interspecific hybrid[J]. In Vitro Cell Dev Biol-Plant, 2021. DOI:10.1007/s11627-021-10240-x. |
[86] | LI Y, SUONTAMA M, BURDON R D, et al. Genotype by environment interactions in forest tree breeding: review of methodology and perspectives on research and application[J]. Tree Genet Genomes, 2017, 13(3): 60. DOI:10.1007/s11295-017-1144-x. |
[87] | 边黎明, 张慧春. 表型技术在林木育种和精准林业上的应用[J]. 林业科学, 2020, 56(6): 113-126. |
BIAN L M, ZHANG H C. Application of phenotyping techniques in forest tree breeding and precision forestry[J]. Sci Silvae Sin, 2020, 56(6): 113-126. DOI:10.11707/j.1001-7448.20200612. | |
[88] | INGVARSSON P K, DAHLBERG H. The effects of clonal forestry on genetic diversity in wild and domesticated stands of forest trees[J]. Scand J For Res, 2019, 34(5): 370-379. DOI:10.1080/02827581.2018.1469665. |
[89] | MATALLANA-RAMIREZ L P, WHETTEN R W, SANCHEZ G M, et al. Breeding for climate change resilience: a case study of loblolly pine (Pinus taeda L.) in North America[J]. Front Plant Sci, 2021, 12: 606908. DOI:10.3389/fpls.2021.606908. |
[90] | 甘四明. 林木分子育种研究的基因组学信息资源述评[J]. 南京林业大学学报(自然科学版), 2020, 44(4): 1-11. |
GAN S M. A review on genomics information resources available for molecular breeding studies in forest trees[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(4): 1-11. DOI:10.3969/j.issn.1000-2006.202005036. | |
[91] | 黄崇辉, 杨朝辉, 陈文平, 等. 桉树杂交育种技术在雷州林业局的应用[J]. 桉树科技, 2008, 25(2): 55-60. |
HUANG C H, YANG Z H, CHEN W P, et al. Application of cross breeding technology of Eucalyptus in Leizhou Forestry Bureau[J]. Eucalypt Sci Technol, 2008, 25(2): 55-60. | |
[92] | GRATTAPAGLIA D, SILVA-JUNIOR O B, RESENDE R T, et al. Quantitative genetics and genomics converge to accelerate forest tree breeding[J]. Front Plant Sci, 2018, 9: 1693. DOI:10.3389/fpls.2018.01693. |
[93] | 谢耀坚. 真实的桉树[M]. 北京: 中国林业出版社, 2015: 76. |
XIE Y J. Tell you the truth of eucalypts[M]. Beijing: China Forestry Publishing House, 2015: 76. | |
[94] | MYBURG A A, GRATTAPAGLIA D, TUSKAN G A, et al. The genome of Eucalyptus grandis[J]. Nature, 2014, 510(7505): 356-362. DOI:10.1038/nature13308. |
[95] | DRIGUEZ P, BOUGOUFFA S, CARTY K, et al. Leaf Go: Leaf to Genome, a quick workflow to produce high-quality de novo plant genomes using long-read sequencing technology[J]. Genome Biol, 2021, 22: 256. DOI:10.1186/s13059-021-02475-z. |
[1] | 高源, 孙佳彤, 周晨光, 姜立泉, 李伟, 李爽. LBD12转录因子调控毛果杨木材形成研究[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 29-38. |
[2] | 俞子承, 凌聪, 陈赢男, 李淑娴, 尹佟明, 李小平. 雄性二倍体毛白杨再生体系的构建和遗传转化的研究[J]. 南京林业大学学报(自然科学版), 2022, 46(1): 187-196. |
[3] | 侯静, 毛金燕, 翟惠, 王洁, 尹佟明. CRISPR/Cas技术在木本植物改良中的应用[J]. 南京林业大学学报(自然科学版), 2021, 45(6): 24-30. |
[4] | 苑兆和, 陈立德, 张心慧, 赵玉洁. 果树分子育种研究进展[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 1-12. |
[5] | 薛蓓蓓, 田国双. 基于碳汇木材复合经营目标的综合效益及影响因素分析[J]. 南京林业大学学报(自然科学版), 2021, 45(2): 205-212. |
[6] | 田呈明, 王笑连, 余璐, 韩珠. 林木与病原菌分子互作机制研究进展[J]. 南京林业大学学报(自然科学版), 2021, 45(1): 1-12. |
[7] | 甘四明. 林木分子育种研究的基因组学信息资源述评[J]. 南京林业大学学报(自然科学版), 2020, 44(4): 1-11. |
[8] | 李鹏, 罗建中, 莫继有, 王楚彪, 卢万鸿, 林彦. 第二世代粗皮桉种子园的花粉污染及其影响[J]. 南京林业大学学报(自然科学版), 2020, 44(2): 51-58. |
[9] | 王章荣. 国外种子园研究热点及对我国营建高世代种子园的启示[J]. 南京林业大学学报(自然科学版), 2019, 43(01): 161-166. |
[10] | 张宇,陈肃,高源,黄海娇. BpMYB4基因在白桦中的遗传转化及低温胁迫应答反应[J]. 南京林业大学学报(自然科学版), 2019, 43(01): 25-31. |
[11] | 周长品,翁启杰,甘四明,姬红霞,陈升侃,王莉,李发根. 应用SNaPshot技术对桉树SNP的检测[J]. 南京林业大学学报(自然科学版), 2018, 42(04): 83-88. |
[12] | 解懿妮,莫晓勇,彭仕尧,邓海燕,刘丽婷. 粤西21个桉树无性系早期性状遗传变异分析和无性系综合选择[J]. 南京林业大学学报(自然科学版), 2018, 42(03): 73-80. |
[13] | MALEKISamanehSadat,MOHAMMADIKourosh,季孔庶. 根癌农杆菌介导遗传转化烟草‘NC89'效率的影响因素[J]. 南京林业大学学报(自然科学版), 2018, 42(01): 27-34. |
[14] | 黄麟,杨济云,方玉兰,李秋成,梁燕,叶建仁. 杉木炭疽菌遗传转化及附着胞发育过程的细胞核行为观察[J]. 南京林业大学学报(自然科学版), 2017, 41(06): 68-72. |
[15] | 周梅,李春干,代华兵. 基于RGBNDVI图像的桉树人工林区森林覆盖变化年度监测[J]. 南京林业大学学报(自然科学版), 2017, 41(05): 65-71. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||