[1] |
MAO P, QIN L J, HAO M Y, et al. An improved approach to estimate above-ground volume and biomass of desert shrub communities based on UAV RGB images[J]. Ecol Indic, 2021, 125: 107494. DOI:10.1016/j.ecolind.2021.107494.
doi: 10.1016/j.ecolind.2021.107494
|
[2] |
MUUKKONEN P. Generalized allometric volume and biomass equations for some tree species in Europe[J]. Eur J Forest Res, 2007, 126(2): 157-166. DOI:10.1007/s10342-007-0168-4.
doi: 10.1007/s10342-007-0168-4
|
[3] |
廖祖辉. 福建桉树人工林材积表和蓄积量表编制的研究[J]. 福建林业科技, 2005, 32(2):17-20.
|
|
LIAO Z H. Studies of the volume table and stocking table compilations of Eucalyptus plantations[J]. J Fujian For Sci Technol, 2005, 32(2): 17-20. DOI:10.13428/j.cnki.fjlk.2005.02.005.
doi: 10.13428/j.cnki.fjlk.2005.02.005
|
[4] |
吕勇, 刘辉, 王才喜. 杉木林分蓄积量不同测定方法的比较[J]. 中南林学院学报, 2001, 21(4): 50-53.
|
|
LV Y, LÜ H, WANG C X. Comparison of the different measurement methods of stand volume[J]. J Central South For Univ, 2001, 21(4): 50-53. DOI:10.3969/j.issn.1673-923X.2001.04.006.
doi: 10.3969/j.issn.1673-923X.2001.04.006
|
[5] |
WIANT H V JR, WOOD G B, WILLIAMS M. Comparison of three modern methods for estmating volume of sample trees using one or two diameter measurements[J]. For Ecol Manag, 1996, 83(1/2): 13-16. DOI:10.1016/0378-1127(96)03708-5.
doi: 10.1016/0378-1127(96)03708-5
|
[6] |
OZCELIK R, WIANT H, BROOKS J. Accuracy using xylometry of log volume estimates for two tree species in Turkey[J]. Scan J Forest Res, 2008, 23(3): 272-277. DOI: 10.1080/02827580801995323.
doi: 10.1080/02827580801995323
|
[7] |
曾伟生. 杉木相容性立木材积表系列模型研建[J]. 林业科学研究, 2014, 27(1): 6-10.
|
|
ZENG W S. Establishment of compatible tree volume equation systems of Chinese fir[J]. For Res, 2014, 27(1): 6-10. DOI:10.13275/j.cnki.lykxyj.2014.01.002.
doi: 10.13275/j.cnki.lykxyj.2014.01.002
|
[8] |
许晴, 李晓莎, 许中旗, 等. 塞罕坝地区樟子松立木材积表研究[J]. 林业资源管理, 2017(1): 57-62.
|
|
XU Q, LI X S, XU Z Q, et al. Study on the volume table of scotch pine in Saihanba aera[J]. For Resour Manag, 2017(1): 57-62. DOI:10.13466/j.cnki.lyzygl.2017.01.011.
doi: 10.13466/j.cnki.lyzygl.2017.01.011
|
[9] |
雷相东. 机器学习算法在森林生长收获预估中的应用[J]. 北京林业大学学报, 2019, 41(12): 23-36.
|
|
LEI X D. Applications of machine learning algorithms in forest growth and yield prediction[J]. J Beijing For Univ, 2019, 41(12): 23-36. DOI:10.12171/j.1000-1522.20190356.
doi: 10.12171/j.1000-1522.20190356
|
[10] |
CUTLER D R, EDWARDS T C J, BEARD K H, et al. Random forests for classification in ecology[J]. Ecology, 2007, 88(11): 2783-2792. DOI:10.1890/07-0539.1.
doi: 10.1890/07-0539.1
pmid: 18051647
|
[11] |
GUAN B T, GERTNER G. Modeling red pine tree survival with an artificial neural network[J]. For Sci, 1991, 37(5): 1429-1440. DOI:10.1093/forestscience/37.5.1429.
doi: 10.1093/forestscience/37.5.1429
|
[12] |
MARIA J D. Artificial neural networks as an alternative tool in pine bark volume estimation[J]. Comput Electron Agric, 2005, 48(3): 235-244. DOI:10.1016/j.compag.2005.04.002.
doi: 10.1016/j.compag.2005.04.002
|
[13] |
MARIA J D, ÖZÇELIK R, YAVUZ H. Tree-bark volume prediction via machine learning: a case study based on black alder’s tree-bark production[J]. Comput Electron Agric, 2018, 151: 431-440. DOI:10.1016/j.compag.2018.06.039.
doi: 10.1016/j.compag.2018.06.039
|
[14] |
COLIN J G, JONGHO I. Forest biomass estimation from airborne LiDAR data using machine learning approaches[J]. Remote Sens Environ, 2012, 125: 80-91. DOI: 10.1016/j.rse.2012.07.006.
doi: 10.1016/j.rse.2012.07.006
|
[15] |
MARIA J D, MILIOS E. Modelling total volume of dominant pine trees in reforestations via multivariate analysis and artificial neural network models[J]. Biosyst Eng, 2010, 105(3): 306-315. DOI: 10.1016/j.biosystemseng.2009.11.010.
doi: 10.1016/j.biosystemseng.2009.11.010
|
[16] |
ÖZCELIK R, MARIA J D, BROOKS J R, et al. Estimating tree bole volume using artificial neural network models for four species in Turkey[J]. J Environ Manag, 2010, 91(3): 742-753. DOI: 10.1016/j.jenvman.2009.10.002.
doi: 10.1016/j.jenvman.2009.10.002
|
[17] |
WU J W, YAO W, CHOI S, et al. A comparative study of predicting DBH and stem volume of individual trees in a temperate forest using airborne waveform LiDAR[J]. IEEE Geosci Remote Sens Lett, 2015, 12(11): 2267-2271. DOI:10.1109/LGRS.2015.2466464.
doi: 10.1109/LGRS.2015.2466464
|
[18] |
MUSHAR S H, AHMAD S S, KASMIN F, et al. Machine learning approach for estimating tree volume[J]. J Phys: Conf Ser, 2020, 1502(1): 012039. DOI:10.1088/1742-6596/1502/1/012039.
doi: 10.1088/1742-6596/1502/1/012039
|
[19] |
BHERING L L, CRUZ C D, DE AZEVEDO P L, et al. Application of neural networks to predict volume in eucalyptus[J]. Crop Breed Appl Biotechnol, 2015, 15(3): 125-131. DOI:10.1590/1984-70332015v15n3a23.
doi: 10.1590/1984-70332015v15n3a23
|
[20] |
靳晓东, 姜立春. 基于树干不同形率的樟子松立木材积方程研建[J]. 北京林业大学学报, 2020, 42(3):78-86.
|
|
JIN X D, JIANG L C. Equation construction on standing tree volume of Pinus sylvestris var. mongolica based on different form quotients of trunk[J]. J Beijing For Univ, 2020, 42(3):78-86. DOI:10.12171/j.1000-1522.20190047.
doi: 10.12171/j.1000-1522.20190047
|
[21] |
张明铁. 单株立木材积测定方法的研究[J]. 林业资源管理, 2004(1):24-26.
|
|
ZHANG M T. Study on volume measurement of single trees[J]. For Resour Manag, 2004(1): 24-26. DOI:10.13466/j.cnki.lyzygl.2004.01.005.
doi: 10.13466/j.cnki.lyzygl.2004.01.005
|
[22] |
RUMELHART D E, HINTON G E, WILLIAMS R J. Learning internal representations by error propagation[J]. Read Cognit Sci, 1988, 323(6088):399-421. DOI:10.1016/B978-1-4832-1446-7.50035-2.
doi: 10.1016/B978-1-4832-1446-7.50035-2
|
[23] |
王轶夫, 孙玉军, 郭孝玉. 基于BP神经网络的马尾松立木生物量模型研究[J]. 北京林业大学学报, 2013, 35(2): 17-21.
|
|
WANG Y F, SUN Y J, GUO X Y. Single-tree biomass modeling of Pinus massoniana based on BP neural network[J]. J Beijing For Univ, 2013, 35(2): 17-21. DOI: 10.13332/j.1000-1522.2013.02.018.
doi: 10.13332/j.1000-1522.2013.02.018
|
[24] |
徐晓明. SVM参数寻优及其在分类中的应用[D]. 大连: 大连海事大学, 2014.
|
|
XU X M. SVM parameter optimization and its application in the classification[D]. Dalian: Dalian Maritime University, 2014.
|
[25] |
曹正凤. 随机森林算法优化研究[D]. 北京: 首都经济贸易大学, 2014.
|
|
CAO Z F. Study on optimization of random forests algorithm[D]. Beijing: Capital University of Economics and Business, 2014.
|
[26] |
BREIMAN L. Bagging predictors[J]. Mach Learn, 1996, 24(2): 123-140. DOI:10.1007/bf00058655.
doi: 10.1007/bf00058655
|
[27] |
DING S, CHANG X H, WU Q H. A study on approximation performances of improved BP neural networks based on LM algorithms[J]. Appl Mech Mater, 2013, 411/412/413/414: 1935-1938. DOI:10.4028/www.scientific.net/amm.411-414.1935.
doi: 10.4028/www.scientific.net/amm.411-414.1935
|
[28] |
杜军岗, 魏汝祥, 刘宝平. 基于PSO优化LS-SVM的小样本非线性协整检验与建模研究[J]. 系统工程理论与实践, 2014, 34(9): 2322-2331.
doi: 10.12011/1000-6788(2014)9-2322
|
|
DU J G, WEI R X, LIU B P. Nonlinear cointegration test and error correction modeling based on LS-SVM optimized by PSO in small sample[J]. Syst Eng-theory Pract, 2014, 34(9): 2322-2331. DOI: CNKI:SUN:XTLL.0.2014-09-015.
doi: CNKI:SUN:XTLL.0.2014-09-015.
|
[29] |
HAJAR A S, AZIZAH A N, HASZLINNA M N. Adoption of machine learning techniques in software effort estimation: an overview[J]. IOP Conf Ser: Mater Sci Eng, 2019, 551(1): 012074. DOI:10.1088/1757-899x/551/1/012074.
|