南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (2): 42-48.doi: 10.12302/j.issn.1000-2006.202111032
王文月1(), 张振1,*(), 金国庆1, 孙林山2, 邱勇斌3, 周志春1, 杨涛1
收稿日期:
2021-11-19
修回日期:
2022-05-12
出版日期:
2023-03-30
发布日期:
2023-03-28
通讯作者:
* 张振(基金资助:
WANG Wenyue1(), ZHANG Zhen1,*(), JIN Guoqing1, SUN Linshan2, QIU Yongbin3, ZHOU Zhichun1, YANG Tao1
Received:
2021-11-19
Revised:
2022-05-12
Online:
2023-03-30
Published:
2023-03-28
摘要:
【目的】揭示柏木生长性状的遗传变异规律,为高阶遗传改良筛选优良种质,选择优良家系,及其区域推广奠定基础。【方法】以营建在浙江省开化县林场(KH)和湖北省太子山林场(TZS)两个试验点的8年生柏木优树子代家系为材料,分析其生长性状的遗传变异,估算其育种值、遗传力等参数。【结果】柏木生长性状(树高、胸径和材积)的遗传变异系数为3.08%~13.93%,其中材积的变异最大。子代家系的树高、胸径和材积在地点间差异显著,TZS点的单株材积高于KH点315.79%,且家系与地点间的交互效应显著。胸径、树高和材积具有显著的家系效应,KH和TZS试验点的家系遗传力变幅分别为0.42~0.61和0.58~0.74。KH和TZS试验点分别以单株材积育种值大于CK的10%和45%为标准,各选出6个优良家系,现实增益分别为33.51%和67.95%。利用独立淘汰法,在KH点和TZS点各筛选优良单株17和12株,材积的遗传增益分别为41.38%和40.92%。【结论】8 年生柏木优树子代家系生长性状具有较大的遗传改良潜力,但家系与环境的互作效应显著;通过子代家系的遗传评价有助于种子园建园亲本的再选择和现有种子园的留优去劣疏伐,同时,选择的优良种质可作为高阶遗传改良的育种亲本。
中图分类号:
王文月,张振,金国庆,等. 两地点8年生柏木生长性状家系变异及选择[J]. 南京林业大学学报(自然科学版), 2023, 47(2): 42-48.
WANG Wenyue, ZHANG Zhen, JIN Guoqing, SUN Linshan, QIU Yongbin, ZHOU Zhichun, YANG Tao. Family variation and selection of growth traits of eight-year-old Cupressus funebris in two sites[J].Journal of Nanjing Forestry University (Natural Science Edition), 2023, 47(2): 42-48.DOI: 10.12302/j.issn.1000-2006.202111032.
表1
柏木参试家系及编号"
家系编号 family No. | 优树 superior tree | 家系编号 family No. | 优树 superior tree | 家系编号 family No. | 优树 superior tree | 家系编号 family No. | 优树 superior tree |
---|---|---|---|---|---|---|---|
1 | CK | 8 | 龙2 | 15 | 叶13 | 22 | 叶9 |
2 | 金1 | 9 | 龙3 | 16 | 叶14 | 23 | 忠石01 |
3 | 金2 | 10 | 威1 | 17 | 叶2 | 24 | 忠石04 |
4 | 金3 | 11 | 威3 | 18 | 叶4 | 25 | 忠石05 |
5 | 金4 | 12 | 叶1 | 19 | 叶6 | 26 | 忠石07 |
6 | 金6 | 13 | 叶11 | 20 | 叶7 | 27 | 梓1 |
7 | 姥5 | 14 | 叶12 | 21 | 叶8 | 28 | 梓3 |
表2
试验点地理位置和气候条件"
地点 site | 北纬(N) latitude | 东经(E) longitude | 海拔/m altitude | 年均温/℃ average annual temperature | 7月均温/℃ average temperature in July | 1月均温/℃ average temperature in January | 绝对低温/℃ absolute low temperature | 年降水量/ mm annual precipitation | 无霜期/d frost-free period | 日照 时间/h sunshine time |
---|---|---|---|---|---|---|---|---|---|---|
开化KH | 29°01' | 118°24' | 180~300 | 16.4 | 30.0 | 6.0 | 2.0 | 1 814.0 | 252 | 1 712.5 |
太子山TZS | 31°03' | 113°11' | 80~120 | 16.3 | 27.7 | 4.8 | -6.2 | 1 094.6 | 233 | 1 949.9 |
表3
各试验点柏木参试家系生长性状的描述性统计和变异系数"
项目 item | 开化KH | 太子山TZS | 联合jions | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
胸径/cm DBH | 树高/m tree height | 材积/m3 volume | 胸径/cm DBH | 树高/m tree height | 材积/m3 volume | 胸径/cm DBH | 树高/m tree height | 材积/m3 volume | ||||||||||
均值±标准差 mean±SD | 2.76±0.85 | 4.23±0.88 | 0.001 9±0.001 5 | 6.24±1.40 | 4.29±0.37 | 0.007 9±0.003 5 | 3.84±1.78 | 4.18±0.74 | 0.004 6±0.003 7 | |||||||||
PCV/% | 32.16 | 20.80 | 78.95 | 22.44 | 8.62 | 44.30 | 46.35 | 17.70 | 80.43 | |||||||||
GCV/% | 5.26 | 4.92 | 13.93 | 7.10 | 3.08 | 12.95 | 5.14 | 2.24 | 9.72 |
表4
柏木参试家系生长性状的单点方差分析"
地点 site | 变异来源 source of variation | df | 均方 mean square | ||
---|---|---|---|---|---|
胸径 DBH | 树高 tree height | 材积 volume | |||
家系family | 27 | 1.58** | 2.03** | 0.49×10-5** | |
开化KH | 区组block | 4 | 4.55** | 4.57** | 0.87×10-5** |
家系×区组 family×block | 102 | 1.07** | 1.04* | 0.34×10-5** | |
剩余residue | 611 | 0.62 | 0.64 | 0.19×10-4 | |
家系family | 27 | 9.47** | 1.22** | 0.51×10-4** | |
太子山TZS | 区组block | 4 | 12.18** | 2.25** | 0.74×10-4** |
家系×区组 family×block | 101 | 2.38* | 0.66** | 0.15×1 | |
剩余residue | 948 | 1.94 | 0.33 | 0.19×10-4 |
表6
各试验点柏木参试家系生长性状的遗传力"
地点 site | 性状 trait | 方差分量variance component | |||||||
---|---|---|---|---|---|---|---|---|---|
胸径DBH | 0.021 | — | 0.031 | 0.621 | 0.13 | 0.42 | 0.31 | ||
开化KH | 树高height | 0.043 | — | 0.020 | 0.637 | 0.25 | 0.61 | 0.41 | |
材积volume | 7.01×10-8 | — | 4.8×10-8 | 1.9×10-8 | 0.14 | 0.46 | 0.30 | ||
胸径DBH | 0.196 | — | 0.045 | 1.941 | 0.30 | 0.58 | 0.52 | ||
太子山TZS | 树高height | 0.017 | — | 0.066 | 0.327 | 0.21 | 0.64 | 0.33 | |
材积volume | 1.05×10-8 | — | 2.79×10-8 | 1.19×10-8 | 0.32 | 0.74 | 0.43 | ||
胸径DBH | 0.039 | 0.090 | 0.025 | 1.447 | 0.10 | 0.39 | 0.26 | ||
联合joint | 树高height | 0.009 | 0.027 | 0.022 | 0.490 | 0.06 | 0.30 | 0.20 | |
材积volume | 2.00×10-7 | 4.42×10-7 | 1.61×10-7 | 8.02×10-6 | 0.09 | 0.39 | 0.23 |
表7
各试验点柏木参试家系生长表现和育种值"
家系号 family No. | 开化KH | 太子山TZS | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
胸径/cm DBH | 树高/m tree height | 材积/m3 volume | 胸径/cm DBH | 树高/m tree height | 材积/m3 volume | |||||||
表型值 phenotypic value | 育种值 breeding value | 表型值 phenotypic value | 育种值 breeding value | 表型值 phenotypic value | 育种值 breeding value | 表型值 phenotypic value | 育种值 breeding value | 表型值 phenotypic value | 育种值 breeding value | 表型值 phenotypic value | 育种值 breeding value | |
2 | 3.31 | 3.09 | 4.84 | 4.65 | 0.002 88 | 0.002 50 | 5.70 | 5.81 | 4.17 | 4.20 | 0.006 94 | 0.007 16 |
24 | 3.13 | 2.98 | 4.70 | 4.55 | 0.002 81 | 0.002 46 | 6.93 | 6.79 | 4.87 | 4.71 | 0.010 92 | 0.010 22 |
28 | 3.00 | 2.91 | 4.64 | 4.51 | 0.002 43 | 0.002 22 | 5.43 | 5.60 | 4.05 | 4.12 | 0.005 95 | 0.006 40 |
3 | 3.00 | 2.90 | 4.45 | 4.38 | 0.002 27 | 0.002 13 | 5.37 | 5.54 | 3.95 | 4.04 | 0.005 99 | 0.006 43 |
12 | 3.10 | 2.96 | 4.10 | 4.14 | 0.002 25 | 0.002 11 | 5.72 | 5.83 | 3.94 | 4.04 | 0.006 45 | 0.006 79 |
25 | 2.97 | 2.89 | 4.30 | 4.28 | 0.002 18 | 0.002 07 | 6.06 | 6.10 | 4.20 | 4.22 | 0.007 84 | 0.007 85 |
5 | 2.67 | 2.71 | 4.20 | 4.21 | 0.002 00 | 0.001 96 | 5.86 | 5.94 | 4.21 | 4.23 | 0.007 01 | 0.007 22 |
17 | 2.72 | 2.73 | 4.60 | 4.48 | 0.002 00 | 0.001 96 | 5.43 | 5.59 | 4.38 | 4.36 | 0.006 54 | 0.006 85 |
27 | 2.81 | 2.79 | 4.31 | 4.28 | 0.001 95 | 0.001 93 | 6.00 | 6.05 | 4.53 | 4.47 | 0.008 00 | 0.007 97 |
9 | 2.80 | 2.78 | 4.26 | 4.25 | 0.001 93 | 0.001 92 | 5.65 | 5.77 | 4.36 | 4.34 | 0.006 98 | 0.007 19 |
4 | 2.68 | 2.71 | 4.28 | 4.26 | 0.001 87 | 0.001 88 | 4.96 | 5.22 | 3.94 | 4.04 | 0.004 99 | 0.005 67 |
19 | 2.75 | 2.76 | 4.18 | 4.19 | 0.001 86 | 0.001 88 | 5.56 | 5.70 | 4.15 | 4.19 | 0.006 51 | 0.006 84 |
26 | 2.66 | 2.70 | 4.30 | 4.28 | 0.001 82 | 0.001 85 | 5.62 | 5.75 | 4.34 | 4.33 | 0.006 98 | 0.007 20 |
1(CK) | 2.77 | 2.76 | 4.26 | 4.25 | 0.001 82 | 0.001 85 | 4.41 | 4.79 | 3.93 | 4.02 | 0.004 19 | 0.005 05 |
16 | 2.74 | 2.75 | 4.15 | 4.17 | 0.001 76 | 0.001 81 | 6.01 | 6.06 | 4.22 | 4.24 | 0.007 50 | 0.007 59 |
13 | 2.70 | 2.72 | 4.04 | 4.10 | 0.001 75 | 0.001 81 | 5.55 | 5.69 | 4.17 | 4.20 | 0.006 16 | 0.006 57 |
8 | 2.77 | 2.76 | 3.83 | 3.95 | 0.001 74 | 0.001 80 | 4.81 | 5.10 | 4.03 | 4.10 | 0.004 92 | 0.005 62 |
23 | 2.50 | 2.60 | 4.06 | 4.11 | 0.001 62 | 0.001 73 | 5.69 | 5.81 | 4.36 | 4.34 | 0.006 91 | 0.007 14 |
14 | 2.61 | 2.67 | 4.00 | 4.07 | 0.001 60 | 0.001 72 | 6.11 | 6.13 | 4.11 | 4.16 | 0.007 62 | 0.007 68 |
21 | 2.50 | 2.60 | 4.25 | 4.24 | 0.001 50 | 0.001 66 | 5.54 | 5.68 | 4.08 | 4.14 | 0.006 38 | 0.006 73 |
18 | 2.43 | 2.56 | 4.06 | 4.11 | 0.001 41 | 0.001 60 | 6.60 | 6.53 | 4.26 | 4.27 | 0.009 01 | 0.008 75 |
6 | 2.51 | 2.61 | 3.88 | 3.99 | 0.001 39 | 0.001 59 | 4.40 | 4.78 | 3.72 | 3.88 | 0.003 89 | 0.004 82 |
7 | 2.41 | 2.55 | 3.97 | 4.05 | 0.001 37 | 0.001 58 | 5.03 | 5.28 | 3.88 | 3.99 | 0.005 37 | 0.005 96 |
15 | 2.45 | 2.57 | 3.83 | 3.96 | 0.001 35 | 0.001 56 | 5.77 | 5.87 | 4.17 | 4.20 | 0.006 70 | 0.006 98 |
11 | 2.47 | 2.59 | 3.94 | 4.03 | 0.001 33 | 0.001 55 | 5.36 | 5.54 | 4.09 | 4.14 | 0.006 06 | 0.006 49 |
20 | 2.47 | 2.59 | 3.89 | 4.00 | 0.001 27 | 0.001 51 | 5.44 | 5.61 | 4.22 | 4.24 | 0.006 42 | 0.006 76 |
10 | 2.37 | 2.52 | 3.76 | 3.91 | 0.001 26 | 0.001 51 | 4.73 | 5.04 | 4.01 | 4.09 | 0.004 93 | 0.005 62 |
22 | 2.29 | 2.47 | 3.83 | 3.96 | 0.001 09 | 0.001 40 | 5.65 | 5.77 | 4.13 | 4.17 | 0.006 57 | 0.006 88 |
[1] | 王云鹏, 张蕊, 周志春, 等. 10年生木荷生长和材性性状家系变异及选择[J]. 南京林业大学学报(自然科学版), 2020, 44(5):85-92. |
WANG Y P, ZHANG R, ZHOU Z C, et al. A variation and selection of growth and wood traits for 10-year-old Schima superba[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(5):85-92.DOI: 10.3969/j.issn.1000-2006.202003086. | |
[2] | 孙晓梅, 杨秀艳. 林木育种值预测方法的应用与分析[J]. 北京林业大学学报, 2011, 33(2):65-71. |
SUN X M, YANG X Y. Applications and analysis of methods for breeding value prediction in forest trees[J]. J Beijing For Univ, 2011, 33(2):65-71.DOI: 10.13332/j.1000-1522.2011.02.020. | |
[3] | YUAN C Z, ZHANG Z, JIN G Q, et al. Genetic parameters and genotype by environment interactions influencing growth and productivity in Masson pine in east and central China[J]. For Ecol Manag, 2021, 487:118991.DOI: 10.1016/j.foreco.2021.118991. |
[4] | 徐德志. 火炬松半同胞家系子代测定及分析[D]. 南京: 南京林业大学, 2010. |
XU D Z. Progeny test and analysis of half-sib families of loblolly pine[D]. Nanjing: Nanjing Forestry University, 2010. | |
[5] | 解懿妮, 刘青华, 蔡燕灵, 等. 5年生马尾松生长性状3地点家系变异及评价[J]. 林业科学研究, 2020, 33(5):1-12. |
XIE Y N, LIU Q H, CAI Y L, et al. Family variation and evaluation of growth traits of 5-year-old Pinus massoniana in three sites[J]. For Res, 2020, 33(5):1-12.DOI: 10.13275/j.cnki.lykxyj.2020.05.001. | |
[6] | 陈坦, 张振, 楚秀丽, 等. 马尾松二代无性系种子园的花期同步性[J]. 林业科学, 2019, 55(1):146-156. |
CHEN T, ZHANG Z, CHU X L, et al. The flowering synchronicity of second-generation clonal seed orchard of Masson pine (Pinus massoniana)[J]. Sci Silvae Sin, 2019, 55(1):146-156.DOI: 10.11707/j.1001-7488.20190117. | |
[7] | REN J S, JI X Y, WANG C H, et al. Variation and genetic parameters of leaf morphological traits of eight families from Populus simonii × P.nigra[J]. Forests, 2020, 11(12):1319.DOI: 10.3390/f11121319. |
[8] | 肖遥. 南方红豆杉种源和家系生长遗传变异[D]. 南京: 南京林业大学, 2016. |
XIAO Y. Genetic variation of provenances and families on Taxus wallichiana var. mairei[D]. Nanjing: Nanjing Forestry University, 2016. | |
[9] | RAYMOND C A. Genotype by environment interactions for Pinus radiata in New South Wales,Australia[J]. Tree Genet Genomes, 2011, 7(4):819-833.DOI: 10.1007/s11295-011-0376-4. |
[10] | CHEN Z Q, KARLSSON B, WU H X. Patterns of additive genotype-by-environment interaction in tree height of Norway spruce in southern and central Sweden[J]. Tree Genet Genomes, 2017, 13(1):25.DOI: 10.1007/s11295-017-1103-6. |
[11] | 王瑞文, 郭赟, 林虎, 等. 柏木研究进展及展望[J]. 湖北林业科技, 2021, 50(4):60-63. |
WANG R W, GUO Y, LIN H, et al. Research progress and prospect of Cupressus funebris[J]. Hubei For Sci Technol, 2021, 50(4):60-63.DOI: 10.3969/j.issn.1004-3020.2021.04.014. | |
[12] | 郑一, 张振, 金国庆, 等. 低肥力土壤施用氮磷钾肥影响柏木家系根系发育和养分吸收对钙肥的响应[J]. 植物营养与肥料学报, 2020, 26(8):1501-1512. |
ZHENG Y, ZHANG Z, JIN G Q, et al. Effects of NPK fertilization on the response of root growth and nutrient absorption of seedlings of Cypress funebris to calcium addition in low fertility soil[J]. J Plant Nutr Fertil, 2020, 26(8):1501-1512.DOI: 10.11674/zwyf.19468. | |
[13] | 洪舟, 杨曾奖, 张宁南, 等. 越南黄花梨种源家系生长遗传变异及早期选择[J]. 南京林业大学学报(自然科学版), 2020, 44(1):25-30. |
HONG Z, YANG Z J, ZHANG N N, et al. Genetic variation and juvenile selection of growth traits of Dalbergia tonkinensis Prain[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(1):25-30.DOI: 10.3969/j.issn.1000-2006.201906028. | |
[14] | 尹海锋, 苏宇, 郭茂金, 等. 目标树经营初期对柏木人工林土壤线虫群落的影响[J]. 生态学报, 2019, 39(10):3607-3621. |
YIN H F, SU Y, GUO M J, et al. Effects of early crop-tree release on soil nematode communities in a Cupressus funebris plantation[J]. Acta Ecol Sin, 2019, 39(10):3607-3621.DOI: 10.5846/stxb201806101296. | |
[15] | 杨育林, 李贤伟, 周义贵, 等. 林窗式疏伐对川中丘陵区柏木人工林生长和植物多样性的影响[J]. 应用与环境生物学报, 2014, 20(6):971-977. |
YANG Y L, LI X W, ZHOU Y G, et al. Effects of gap thinning on growth and diversity of a cypress plantation in the hilly region of central Sichuan[J]. Chin J Appl Environ Biol, 2014, 20(6):971-977.DOI: 10.3724/SP.J.1145.2014.05004. | |
[16] | 李新国, 朱之悌. 用地点间遗传相关研究树木基因型×环境互作[J]. 北京林业大学学报, 1992, 14(S3):85-91. |
LI X G, ZHU Z T. Introducing between-site genetic correlation into studies on genotype environment interaction in forest tree[J]. J Beijing For Univ, 1992, 14(S3):85-91. | |
[17] | WHITE T L, ADAMS W T, NEALE D B. Forest genetics[M]. UK: CABI, 2007.DOI: 10.1079/9781845932855.0000. |
[18] | 林元震. 林木基因型与环境互作的研究方法及其应用[J]. 林业科学, 2019, 55(5):142-151. |
LIN Y Z. Research methodologies for genotype by environment interactions in forest trees and their applications[J]. Sci Silvae Sin, 2019, 55(5):142-151.DOI: 10.11707/j.1001-7488.20190516. | |
[19] | 严艳兵, 潘惠新. 美洲黑杨无性系木材材性与生长性状遗传相关分析[J]. 中南林业科技大学学报, 2021, 41(5):74-81. |
YAN Y B, PAN H X. Genetic correlation analysis of wood property and growth traits in Populus deltoides clones[J]. J Central South Univ For & Technol, 2021, 41(5):74-81.DOI: 10.14067/j.cnki.1673-923x.2021.05.009. | |
[20] | 洪永辉, 林文奖, 黄以法. 12年生马尾松种子园半同胞家系生长性状变异分析与优良家系选择[J]. 南京林业大学学报(自然科学版), 2010, 34(4):26-30. |
HONG Y H, LIN W J, HUANG Y F. Selection of excellent families and analysis on growth variation for the 12-year-old half-sib family of seed orchard of Pinus massoniana[J]. J Nanjing For Univ (Nat Sci Ed), 2010, 34(4):26-30.DOI: 10.3969/j.issn.1000-2006.2010.04.006. | |
[21] | 金国庆, 张振, 余启新, 等. 马尾松2个世代种子园6年生家系生长的遗传变异与增益比较[J]. 林业科学, 2019, 55(7):57-67. |
JIN G Q, ZHANG Z, YU Q X, et al. Comparisons of genetic variation and gains of 6-year-old families from first-and second-generation seed orchards of Pinus massoniana[J]. Sci Silvae Sin, 2019, 55(7):57-67.DOI: 10.11707/j.1001-7488.20190706. | |
[22] | 刘晓婷, 魏嘉彤, 吴培莉, 等. 吉林省天然红松居群表型变异分析及多样性研究[J]. 北京林业大学学报, 2021, 43(4):25-34. |
LIU X T, WEI J T, WU P L, et al. Phenotypic variation and diversity of natural Pinus koraiensis populations in Jilin Province of Northern China[J]. J Beijing For Univ, 2021, 43(4):25-34.DOI: 10.12171/j.1000-1522.20200250. | |
[23] | 周琳. 柏木优树子代遗传分析及优良家系评选[D]. 雅安: 四川农业大学, 2017. |
ZHOU L. Genetic analysis Y and superior family selection about Cupressus funebris progen[D]. Ya’an: Sichuan Agricultural University, 2017. | |
[24] | 刘宇, 徐焕文, 张广波, 等. 白桦半同胞子代多点生长性状测定及优良家系选择[J]. 北京林业大学学报, 2017, 39(3):7-15. |
LIU Y, XU H W, ZHANG G B, et al. Multipoint growth trait test of half-sibling offspring and excellent family selection of Betula platyphylla[J]. J Beijing For Univ, 2017, 39(3):7-15.DOI: 10.13332/j.1000-1522.20160154. | |
[25] | 曾德贤, 朱仁刚, 范林元, 等. 墨西哥柏52个优树自由授粉子代遗传测定[J]. 西南林学院学报, 2006, 26(4):22-26. |
ZENG D X, ZHU R G, FAN L Y, et al. Progeny test on 52 openly-pollinated families of Cupressus lusitanica[J]. J Southwest For Coll, 2006, 26(4):22-26.DOI: 10.3969/j.issn.2095-1914.2006.04.006. | |
[26] | NOCETTI M, DELLA ROCCA G, BERTI S, et al. Genetic growth parameters and morphological traits of canker-resistant cypress clones selected for timber production[J]. Tree Genet Genomes, 2015, 11(4):73.DOI: 10.1007/s11295-015-0900-z. |
[27] | 袁承志, 陈坦, 张振, 等. 不同养分环境下钙添加对柏木家系苗木生长和根系发育的影响[J]. 应用与环境生物学报, 2020, 26(5):1161-1168. |
YUAN C Z, CHEN T, ZHANG Z, et al. Effects of calcium addition on growth and root development of Cupressus funebris families in different nutrient conditions[J]. Chin J Appl Environ Biol, 2020, 26(5):1161-1168.DOI: 10.19675/j.cnki.1006-687x.2019.09048. | |
[28] | 张华丽, 张金凤, 王军辉, 等. 针叶树补光育苗技术研究进展[J]. 西北林学院学报, 2005, 20(1):107-111. |
ZHANG H L, ZHANG J F, WANG J H, et al. Advances in technology of growing seedlings by supplemental lighting in conifers[J]. J Northwest For Univ, 2005, 20(1):107-111.DOI: 10.3969/j.issn.1001-7461.2005.01.028. | |
[29] | IVKOVIC M, GAPARE W, WU H, et al. Influence of cambial age and climate on ring width and wood density in Pinus radiata families[J]. Ann For Sci, 2013, 70(5):525-534.DOI: 10.1007/s13595-013-0290-z. |
[30] | YU Q B, PULKKINEN P. Genotype-environment interaction and stability in growth of aspen hybrid clones[J]. For Ecol Manag, 2003, 173(1/2/3):25-35.DOI: 10.1016/S0378-1127(1)00819-2. |
[1] | 李家亮, 巫大宇, 毛康珊. 柏木属的分类地位和物种多样性研究现状与建议[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 36-45. |
[2] | 王章荣, 季孔庶, 徐立安, 邹秉章, 林能庆, 林景泉. 马尾松实生种子园营建技术、现实增益及多世代低成本经营新模式探讨[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 9-16. |
[3] | 欧阳, 欧阳芳群, 孙猛, 王超, 王军辉, 安三平, 王丽芳, 许娜, 王猛. 欧洲云杉无性系幼龄生长节律、年度和密度互作效应及选择策略[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 95-104. |
[4] | 叶代全. 杉木第4代育种候选群体的12年生全同胞子代测定表现与选择[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 240-250. |
[5] | 何旭东, 隋德宗, 王红玲, 黄瑞芳, 郑纪伟, 王保松. 中国柳树遗传育种研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 51-63. |
[6] | 贾庆彬, 刘庚, 赵佳丽, 李奎友, 孙文生. 红松半同胞家系生长性状变异分析与优良家系选择[J]. 南京林业大学学报(自然科学版), 2022, 46(4): 109-116. |
[7] | 洪舟, 吴培衍, 张金文, 王维辉, 许丽鸿, 申巍, 徐大平. 漳州地区交趾黄檀幼龄期生长表现及适应性分析[J]. 南京林业大学学报(自然科学版), 2020, 44(6): 118-124. |
[8] | 王云鹏, 张蕊, 周志春, 华斌, 黄少华, 马丽珍, 范辉华. 10年生木荷生长和材性性状家系变异及选择[J]. 南京林业大学学报(自然科学版), 2020, 44(5): 85-92. |
[9] | 张晓艳, 季新月, 王雷, 张绮纹, NERVO Giuseppe, 李金花. 不同地点黑杨派无性系生长性状变异及其与叶片性状相关分析[J]. 南京林业大学学报(自然科学版), 2020, 44(3): 65-73. |
[10] | 刘玉鑫, 颜开义, 何伟, 潘惠新. 美洲黑杨无性系木材纤维性状遗传变异[J]. 南京林业大学学报(自然科学版), 2020, 44(2): 67-74. |
[11] | 洪舟, 杨曾奖, 张宁南, 郭俊誉, 刘小金, 崔之益, 徐大平. 越南黄花梨种源家系生长遗传变异及早期选择[J]. 南京林业大学学报(自然科学版), 2020, 44(1): 25-30. |
[12] | 冯源恒, 李火根, 杨章旗, 黄永利, 陈虎. 广西马尾松三个优良种源的遗传多样性及生长性状变异分析[J]. 南京林业大学学报(自然科学版), 2019, 43(6): 67-72. |
[13] | 李婷婷,袁位高,温丽娜,朱锦茹,刘建灵,邱帅,张大伟. 基于HalfsibBV的大叶榉树家系遗传参数估算与综合选择[J]. 南京林业大学学报(自然科学版), 2019, 43(04): 8-16. |
[14] | 潘艳艳,许贵友,董利虎,王成录,梁德洋,赵曦阳. 日本落叶松全同胞家系苗期生长性状遗传变异[J]. 南京林业大学学报(自然科学版), 2019, 43(02): 14-22. |
[15] | 王章荣. 国外种子园研究热点及对我国营建高世代种子园的启示[J]. 南京林业大学学报(自然科学版), 2019, 43(01): 161-166. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||