南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (3): 182-190.doi: 10.12302/j.issn.1000-2006.202112044
戈悦1(), 刘悦秋1,*(), 丛一蓬2,*(), 胡振园3, 冯佳宁1
收稿日期:
2021-12-28
修回日期:
2022-10-20
出版日期:
2023-05-30
发布日期:
2023-05-25
通讯作者:
刘悦秋,丛一蓬
基金资助:
GE Yue1(), LIU Yueqiu1,*(), CONG Yipeng2,*(), HU Zhenyuan3, FENG Jianing1
Received:
2021-12-28
Revised:
2022-10-20
Online:
2023-05-30
Published:
2023-05-25
Contact:
LIU Yueqiu,CONG Yipeng
摘要:
【目的】颐和园是著名的皇家园林及世界文化遗产,监测评价其土壤质量,为提升颐和园管理水平,实现世界文化遗产地及其生态环境的科学保护与管理提供参考。【方法】采集颐和园代表性植被覆盖区域的表层(0~20 cm)土壤样品,检测土壤容重、pH、电导率、有机质、全氮、全磷、全钾、碱解氮、有效磷、速效钾含量和细菌Shannon多样性指数共11项评价指标,进行主成分分析筛选建立最小数据集,利用隶属函数值及权重赋值法进行土壤质量指数(soil quality index,SQI)计算,通过对全数据集及最小数据集的土壤质量指数进行拟合分析,对不同植被覆盖区的土壤肥力质量进行分析和评价。【结果】最终进入最小数据集的指标为全磷含量、电导率、容重和Shannon多样性指数4个指标,全量数据集和最小数据集分别计算的土壤质量指数之间存在显著正相关关系,R2为0.877。颐和园土壤质量指数(SQI)分3个等级,牡丹种植区的土壤质量较好(SQI≥0.80),落叶阔叶林区、宿根花卉区和野生灌草丛区土壤质量属于中等(0.40≤SQI<0.80),践踏草坪区和针阔叶混交林区土壤质量较差(0.20<SQI<0.40)。园区土壤总体呈现中性至碱性(pH为6.83~8.71),有机质含量普遍低(均值在8.83~17.06 g/kg)。速效磷空间分布极不平衡,变异系数为161.55%,76.00%的样点处于极度匮乏状态。【结论】人为干扰对颐和园土壤质量产生显著影响,牡丹种植区因施用有机肥,土壤质量指数高,其他区域土壤质量中等偏下。全园土壤有机质含量除牡丹种植区外普遍含量较低,有效态氮、磷空间分布不平衡,建议通过保留枯枝落叶、合理施用有机肥及磷肥等措施,改善土壤质量。
中图分类号:
戈悦,刘悦秋,丛一蓬,等. 颐和园绿地表层土壤肥力质量评价[J]. 南京林业大学学报(自然科学版), 2023, 47(3): 182-190.
GE Yue, LIU Yueqiu, CONG Yipeng, HU Zhenyuan, FENG Jianing. Surface soil fertility quality evaluation of green land in the Summer Palace[J].Journal of Nanjing Forestry University (Natural Science Edition), 2023, 47(3): 182-190.DOI: 10.12302/j.issn.1000-2006.202112044.
表1
土壤指标标准评分函数及参数"
指标 index | 函数类型 function type | x1 | x2 | 函数式formula |
---|---|---|---|---|
容重/(g·cm-3) SBD | R(x) | 1.00(x1) | 1.20(r2) | |
1.10(r1) | 1.35(x2) | |||
pH | R(x) | 5.50(x1) | 8.00(r2) | |
6.50(r1) | 8.50(x2) | |||
有机质含量/(g·kg-1) SOM content | M(x) | 12.00 | 20.00 | |
全氮含量/(g·kg-1) TN content | M(x) | 0.75 | 1.50 | |
全磷含量/(g·kg-1) TP content | M(x) | 0.40 | 1.50 | |
全钾含量/(g·kg-1) TK content | M(x) | 9.00 | 20.00 | |
碱解氮含量/(mg·kg-1) AN content | M(x) | 60.00 | 200.00 | |
速效磷含量/(mg·kg-1) AP content | M(x) | 10.00 | 60.00 | |
速效钾含量/(mg·kg-1) AK content | M(x) | 90.00 | 300.00 | |
电导率/(mS·cm-1) EC | L(x) | 0.10 | 0.50 | |
香农多样性指数 HShannon | M(x) | 8.09 | 10.09 |
表2
颐和园土壤肥力指标测定统计"
统计项 statistical item | 容重/ (g·cm-3) SBD | pH | 有机质含量/ (g·kg-1) SOM content | 全氮 含量/ (g·kg-1) TN content | 全磷 含量/ (g·kg-1) TP content | 全钾 含量/ (g·kg-1) TK content | 碱解氮 含量/ (mg·kg-1) AN content | 速效磷 含量/ (mg·kg-1) AP content | 速效钾 含量/ (mg·kg-1) AK content | 电导率/ (mS·cm-1) EC | 香农 多样性 指数 HShannon |
---|---|---|---|---|---|---|---|---|---|---|---|
最小值 minimum value | 0.94 | 6.83 | 4.91 | 0.43 | 0.42 | 4.82 | 36.52 | 0.33 | 51.7 | 0.076 | 8.09 |
最大值 maximum value | 1.57 | 8.71 | 21.03 | 3.49 | 3.24 | 8.18 | 838.38 | 56.83 | 351.25 | 0.413 | 10.09 |
均值mean | 1.28 | 8.25 | 11.16 | 1.15 | 0.86 | 5.97 | 182.91 | 10.85 | 164.37 | 0.139 | 9.44 |
标准差SD | 0.15 | 0.42 | 3.72 | 0.63 | 178.42 | 0.61 | 17.53 | 0.79 | 78.67 | 0.078 | 0.38 |
变异系数/% CV | 11.83 | 5.11 | 33.32 | 55.01 | 70.87 | 13.21 | 97.55 | 161.55 | 47.86 | 55.93 | 4.07 |
表3
颐和园各植被覆盖区土壤肥力指标测量值"
样区 plot | 容重/ (g·cm-3) SBD | pH | 有机质 含量/ (g·kg-1) SOM content | 全氮 含量/ (g·kg-1) TN content | 全磷 含量/ (g·kg-1) TP content | 全钾 含量/ (g·kg-1) TK content | 碱解氮 含量/ (mg·kg-1) AN content | 速效磷 含量/ (mg·kg-1) AP content | 速效钾 含量/ (mg·kg-1) AK content | 电导率 含量/ (mS·cm-1) EC | 香农 多样性 指数 HShannon |
---|---|---|---|---|---|---|---|---|---|---|---|
MD | 1.13± 0.05 c | 7.46± 0.22 b | 17.06± 1.58 a | 2.41± 0.34 a | 2.29± 0.27 a | 6.75± 0.40 a | 558.38± 124.11 a | 55.98± 0.33 a | 309.20± 16.14 a | 0.21± 0.03 a | 9.58± 0.15 a |
SG | 1.21± 0.05 bc | 8.31± 0.11 a | 11.58± 1.27 b | 0.81± 0.10 c | 0.66± 0.05 c | 5.72± 0.27 bc | 142.39± 17.49 b | 5.61± 1.21 c | 131.68± 4.14 cd | 0.11± 0.00 b | 9.63± 0.11 a |
LY | 1.29± 0.06 ab | 8.31± 0.0 5a | 8.83± 0.83 b | 1.03± 0.09 bc | 0.98± 0.10 b | 6.37± 0.22 ab | 184.47± 30.35 b | 14.08± 1.98 b | 205.20± 19.29 b | 0.13± 0.01 b | 9.40± 0.12 ab |
HJ | 1.35± 0.04 ab | 8.26± 0.08 a | 10.54± 0.96 b | 0.77± 0.07 c | 0.50± 0.02 c | 5.88± 0.28 bc | 104.79± 9.75 b | 1.11± 0.15 d | 175.38± 23.31 bc | 0.09± 0.00 b | 9.49± 0.03 a |
CP | 1.36± 0.04 a | 8.46± 0.14 a | 10.11± 0.60 b | 0.95± 0.12 bc | 0.52± 0.03 c | 5.53± 0.09 c | 90.77± 16.90 b | 0.58± 0.08 d | 91.43± 12.09 d | 0.22± 0.04 a | 9.09± 0.14 b |
GC | 1.29± 0.03 ab | 8.42± 0.04 a | 10.79± 1.10 b | 1.34± 0.11 b | 0.67± 0.03 c | 5.83± 0.22 bc | 141.80± 9.65 b | 2.79± 0.51 cd | 121.60± 10.59 d | 0.10± 0.00 b | 9.47± 0.15 a |
表4
颐和园土壤肥力指标主成分荷载值及Norm值"
主成分 principal component | SBD | pH | SOM | EC | TN | TP | TK | AN | AP | AK | HShannon |
---|---|---|---|---|---|---|---|---|---|---|---|
PC1 | -0.357 | -0.798 | 0.750 | 0.430 | 0.902 | 0.972 | 0.628 | 0.935 | 0.890 | 0.745 | 0.250 |
PC2 | 0.512 | -0.135 | 0.250 | 0.750 | 0.219 | -0.080 | 0.000 | 0.066 | -0.197 | -0.476 | -0.350 |
PC3 | 0.281 | -0.116 | 0.200 | 0.093 | -0.022 | -0.054 | -0.348 | -0.043 | -0.043 | -0.036 | 0.861 |
PC4 | 0.670 | 0.065 | -0.189 | -0.179 | -0.055 | 0.065 | 0.499 | 0.017 | -0.045 | 0.255 | 0.067 |
公因子方差 common factor variance | 0.918 | 0.672 | 0.700 | 0.789 | 0.864 | 0.958 | 0.765 | 0.881 | 0.835 | 0.848 | 0.931 |
Norm值 Norm value | 1.254 | 1.957 | 1.871 | 1.377 | 2.215 | 2.373 | 1.637 | 2.282 | 2.183 | 1.914 | 1.136 |
表5
颐和园表层土壤肥力指标之间的相关性矩阵"
指标index | SBD | pH | SOM | EC | TN | TP | TK | AN | AP | AK | HShannon |
---|---|---|---|---|---|---|---|---|---|---|---|
SBD | 1 | ||||||||||
pH | 0.214 | 1 | |||||||||
SOM | -0.199 | -0.562** | 1 | ||||||||
EC | 0.083 | -0.458** | 0.394** | 1 | |||||||
TN | -0.250 | -0.649** | 0.788** | 0.476** | 1 | ||||||
TP | -0.336* | -0.724** | 0.646** | 0.348* | 0.868** | 1 | |||||
TK | -0.116 | -0.390** | 0.369** | 0.170 | 0.563** | 0.619** | 1 | ||||
AN | -0.288* | -0.720** | 0.694** | 0.414** | 0.863** | 0.907** | 0.573** | 1 | |||
AP | -0.386** | -0.660** | 0.559** | 0.271 | 0.738** | 0.926** | 0.432** | 0.782** | 1 | ||
AK | -0.314* | -0.544** | 0.328* | 0.007 | 0.483** | 0.773** | 0.503** | 0.659** | 0.784** | 1 | |
HShannon | -0.052 | -0.203 | 0.236 | -0.041 | 0.142 | 0.221 | 0.002 | 0.169 | 0.202 | 0.289* | 1 |
[1] | GAIROLA S U, SONI P. Role of soil physical properties in ecological succession of restored mine land: a case study[J]. International Journal of Environmental Sciences, 2010, 1(4):475-480. |
[2] | 张华, 张甘霖. 土壤质量指标和评价方法[J]. 土壤, 2001(6):326-330,333. |
ZHANG H, ZHANG G L. Indexes and estimate methods for soil quality[J]. Soils, 2001(6):326-330, 333.DOI:10.1375 8/j.cnki.tr.2001.06.011. | |
[3] | 蔡雄飞, 李丁, 王济, 等. 基于改进模糊数学法的五马河沿岸土壤重金属污染评价[J]. 江苏农业科学, 2019, 47(1):246-250. |
CAI X F, LI D, WANG J, et al. Evaluation of heavy metal pollution in soils along Wuma River based on improved fuzzy mathematics[J]. Jiangsu Agric Sci, 2019, 47(1):246-250.DOI:10.15889/j.issn.1002-1302.2019.01.058. | |
[4] | 赵蛟, 徐梦洁, 庄舜尧, 等. 基于模糊综合评价法的建瓯市毛竹林地土壤肥力评价[J]. 土壤通报, 2018, 49(6):1428-1435. |
ZHAO J, XU M J, ZHUANG S Y, et al. Evaluation of soil fertility of Phyllostachys pubescens forest in Jian’ou based on fuzzy comprehensive evaluation method[J]. Chin J Soil Sci, 2018, 49(6):1428-1435.DOI:10.19336/j.cnki.trtb.2018.06.23. | |
[5] | SMITH J L, HALVORSON J J, PAPENDICK R I. Using multiple-variable indicator kriging for evaluating soil quality[J]. Soil Sci Soc Am J, 1993, 57(3):743-749.DOI:10.2136/sssaj1993.03615995005700030020x. |
[6] | 孙蓓婷, 高超, 张燕. 基于加权Topsis法综合评价典型滩涂围垦区土壤质量演变[J]. 中国生态农业学报, 2018, 26(2):284-293. |
SUN B T, GAO C, ZHANG Y. Soil quality evaluation in typical coastal reclamation zones based on weighted Topsis method[J]. Chin J Eco Agric, 2018, 26(2):284-293.DOI:10.13930/j.cnki.cjea.170711. | |
[7] | DORAN J W, PARKIN T B. Defining Soil Quality for a Sustainable Environment. Vol.35[M]. Modison, WI: Soil Science Society of America (SSSA), 1994, 35:1-21.DOI:10.2136/sssaspecpub35.c1. |
[8] | 邓绍欢, 曾令涛, 关强, 等. 基于最小数据集的南方地区冷浸田土壤质量评价[J]. 土壤学报, 2016, 53(5):1326-1333. |
DENG S H, ZENG L T, GUAN Q, et al. Minimum dataset-based soil quality assessment of waterlogged paddy field in South China[J]. Acta Pedol Sin, 2016, 53(5):1326-1333.DOI:10.11766/trxb201509070316. | |
[9] | 李桂林, 陈杰, 檀满枝, 等. 基于土地利用变化建立土壤质量评价最小数据集[J]. 土壤学报, 2008, 45(1):16-25. |
LI G L, CHEN J, TAN M Z, et al. Establishment of a minimum dataset for soil quality assessment based on land use change[J]. Acta Pedol Sin, 2008, 45(1):16-25.DOI:10.11766/trxb200610020103. | |
[10] | 张娟, 田宇, 王艳春. 颐和园土壤肥力特征分析[C]// 2014“城市园林绿化与和谐宜居之都建设”学术论坛暨学会成立50周年纪念大会论文集. 北京: 科学技术文献出版, 2014:417-421. |
ZHANG J, TIAN Y, WANG Y C. Analysis of Soil Fertility Characteristics of Summer Palace[C]// 2014“Urban Landscaping and Harmony and Imitting Bocal Construction”Academic Forum and Society Established 50 Anniversary Conference Papers. Beijing: Science and Technology Documentation Pres, 2014:417-421. | |
[11] | 刘克锋, 王静, 王衍庆, 等. 北京市十大公园土壤性状及其改良利用的研究[J]. 北京农学院学报, 1994, 9(2):25-44. |
LIU K F, WANG J, WANG Y Q, et al. Studies on soil characteristics and improvement & utilization of ten major gardens in Beijing[J]. J Beijing Agric Coll, 1994, 9(2):25-44.DOI:10.13473/j.cnki.issn.1002-3186.1994.02.005. | |
[12] | 吴建芝, 王艳春, 田宇, 等. 北京市公园和道路绿地土壤重金属含量特征比较研究[C]// 2016北京园林绿化建设与发展. 北京: 科学技术文献出版社, 2016:206-210. |
WU J Z, WANG Y C, TIAN Y, et al. Comparative Study on Characteristics of Soil Heavy Metal Content in Beijing Park and Road Green Space[C]// 2016 Beijing landscaping construction and development. Beijing: Science and Technology Documentation Press, 2016:206-210. | |
[13] | 胡振园, 许蕊, 丛一蓬. 颐和园湿地生态系统健康评价研究[J]. 湿地科学与管理, 2020, 16(2):27-31. |
HU Z Y, XU R, CONG Y P. Assessment of wetland ecosystem health in the Summer Palace[J]. Wetl Sci Manag, 2020, 16(2):27-31.DOI:10.3969/j.issn.1673-3290.2020.02.06. | |
[14] | 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000:30-183. |
BAO S D. Soil and Agricultural Chemistry Analysis[M]. 3rd ed. Beijing: Chinese Agriculture Press, 2000:30-183. | |
[15] | 娄义宝, 史东梅, 蒋光毅, 等. 基于最小数据集的紫色丘陵区坡耕地耕层土壤质量评价[J]. 中国水土保持科学, 2019, 17(5):75-85. |
LOU Y B, SHI D M, JIANG G Y, et al. Evaluation of soil quality in the cultivated-layer of sloping farmland in purple hilly area based on minimum data set[J]. Sci Soil Water Conserv, 2019, 17(5):75-85.DOI:10.16843/j.sswc.2019.05.009. | |
[16] | 姜龙群, 侯贵廷, 黄淇, 等. 基于因子分析和最小数据集的土壤养分评价:以房山平原区为例[J]. 土壤通报, 2018, 49(5):1034-1040. |
JIANG L Q, HOU G T, HUANG Q, et al. Evaluation of soil fertility quality with a minimum data set and factor analysis in the Fangshan plain of Beijing[J]. Chin J Soil Sci, 2018, 49(5):1034-1040.DOI:10.19336/j.cnki.trtb.2018.05.04. | |
[17] | KARLEN D L, STOTT D E. A framework for evaluating physical and chemical indicators of soilquality[J]. Defining Soil Quality for a Sustainable Environment, 1994, 35: 53-72. DOI:10.2136/sssaspecpub35.c4. |
[18] | GUO L L, SUN Z G, OUYANG Z, et al. A comparison of soil quality evaluation methods for Fluvisol along the lower Yellow River[J]. Catena, 2017, 152:135-143.DOI:10.1016/j.catena.2017.01.015. |
[19] | 卢立华, 冯益明, 农友, 等. 基于林班尺度的森林立地类型划分与质量评价[J]. 林业资源管理, 2018(2):48-57. |
LU L H, FENG Y M, NONG Y, et al. Classification and quality evaluation of forest site types by using compartments as the research scale[J]. For Resour Manag, 2018(2):48-57.DOI:10.13466/j.cnki.lyzygl.2018.02.010. | |
[20] | 北京市园林绿化局. 园林绿化种植土壤技术要求:DB11/T 864-2020[S]. 北京: 北京市市场监督管理局, 2020:5. |
Beijing Munieipal Forestry and Parks Bureau. Soil requirements for landscaping use:DB/T 864-2020.[S]. Beijing: Beijing Municipal Administration of Market Supervision, 2020:5. | |
[21] | 国土资源部. 土地质量地球化学评价规:DZ/T 029-2016[S]. 北京: 中华人民共和国国土资源部, 2016:42. |
MOLR. Specification of land quality geochemical assessment:DZ/T 029-2016[S]. Beijing: Ministry of Land and Resources of the People’s Republic of China, 2016:42. | |
[22] | 刘艳. 北京市崇文区绿地表层土壤质量研究与评价[D]. 北京: 中国林业科学研究院, 2009:46. |
LIU Y. Soil quality and its assessment in green areas of Chongwen district of Beijing[D]. Beijing: Chinese Academy of Forestry, 2009:46. | |
[23] | 史东梅, 江娜, 蒋光毅, 等. 紫色土坡耕地耕层质量影响因素及其敏感性分析[J]. 农业工程学报, 2020, 36(3):135-143. |
SHI D M, JIANG N, JIANG G Y, et al. Influencing factors and sensitivity analysis of cultivated-layer quality of purple soil slope farmland[J]. Trans Chin Soc Agric Eng, 2020, 36(3):135-143.DOI:10.11975/j.issn.1002-6819.2020.03.017. | |
[24] | 狄晓双, 武红旗, 贾宏涛, 等. 新疆主要草地土壤容重与有机碳含量关系模型构建[J]. 土壤通报, 2021, 52(6):1323-1329. |
DI S X, WU H Q, JIA H T, et al. Construction of relationship model between soil bulk density and soil organic carbon content of main grasslands in Xinjiang[J]. Chin J Soil Sci, 2021, 52(6):1323-1329.DOI:10.19336/j.cnki.trtb.2020101203. | |
[25] | 杨玉敏, 师学义, 张琛. 基于内梅罗指数法的复垦村庄土壤重金属污染评价及空间分布[J]. 水土保持研究, 2016, 23(4):338-343. |
YANG Y M, SHI X Y, ZHANG C. Spatial distribution and evaluation of heavy metal pollution of reclaiming village based on nemerow integrated pollution index method[J]. Res Soil Water Conserv, 2016, 23(4):338-343.DOI:10.13869/j.cnki.rswc.2016.04.043. | |
[26] | 余林, 徐海宁, 肖复明. 不同施肥毛竹林土壤质量的灰色关联分析[J]. 南方林业科学, 2018, 46(3):1-4. |
YU L, XU H N, XIAO F M. Grey relation analysis of soil quality of Phyllostachys edulis stands at different fertilization[J]. South China For Sci, 2018, 46(3):1-4.DOI:10.16259/j.cnki.36-1342/s.2018.03.001. | |
[27] | 解雪峰, 濮励杰, 朱明, 等. 基于MDS与TOPSIS模型的滨海滩涂围垦区土壤质量评价[J]. 环境科学, 2019, 40(12):5484-5492. |
XIE X F, PU L J, ZHU M, et al. Assessment of soil quality in coastal tidal flat reclamation areas based on MDS-TOPSIS model[J]. Environ Sci, 2019, 40(12):5484-5492.DOI:10.13227/j.hjkx.201905129. | |
[28] | 余健, 房莉, 仓定帮, 等. 熵权模糊物元模型在土地生态安全评价中的应用[J]. 农业工程学报, 2012, 28(5):260-266. |
YU J, FANG L, CANG D B, et al. Evaluation of land eco-security in Wanjiang district base on entropy weight and matter element model[J]. Trans Chin Soc Agric Eng, 2012, 28(5):260-266.DOI:10.3969/j.issn.1002-6819.2012.05.043. | |
[29] | 梅楠, 谷岩, 李德忠, 等. 基于最小数据集的吉林省黑土耕层土壤质量评价[J]. 农业工程学报, 2021, 37(12):91-98. |
MEI N, GU Y, LI D Z, et al. Soil quality evaluation in topsoil layer of black soil in Jilin Province based on minimum data set[J]. Trans Chin Soc Agric Eng, 2021, 37(12):91-98.DOI:10.11975/j.issn.1002-6819.2021.12.011. | |
[30] | 金慧芳, 史东梅, 陈正发, 等. 基于聚类及PCA分析的红壤坡耕地耕层土壤质量评价指标[J]. 农业工程学报, 2018, 34(7):155-164. |
JIN H F, SHI D M, CHEN Z F, et al. Evaluation indicators of cultivated layer soil quality for red soil slope farmland based on cluster and PCA analysis[J]. Trans Chin Soc Agric Eng, 2018, 34(7):155-164.DOI:10.11975/j.issn.1002-6819.2018.07.020. | |
[31] | 欧芷阳, 申文辉, 庞世龙, 等. 平果喀斯特山地不同植物群落的土壤质量评价[J]. 生态学杂志, 2015, 34(10):2771-2777. |
OU Z Y, SHEN W H, PANG S L, et al. Assessment of soil quality of different plant communities in the Karst mountains of Pingguo County,Guangxi[J]. Chin J Ecol, 2015, 34(10):2771-2777.DOI:10.13292/j.1000-4890.2015.0258. | |
[32] | SVORAY T, HASSID I, ATKINSON P M, et al. Mapping soil health over large agriculturally important areas[J]. Soil Sci Soc Am J, 2015, 79(5):1420-1434.DOI:10.2136/sssaj2014.09.0371. |
[33] | 张沛, 李毅, 商艳玲. 偏最小二乘回归方法提取土壤质量单项评价指标初探[J]. 灌溉排水学报, 2015, 34(5):72-78. |
ZHANG P, LI Y, SHANG Y L. Extraction of single soil quality index by partial least squares regression method[J]. J Irrigation Drainage, 2015, 34(5):72-78.DOI:10.13522/j.cnki.ggps.2015.05.015. | |
[34] | 李辰, 陈颢明, 胡亦舒, 等. 富磷生物炭协助溶磷细菌对Cu的修复机制[J]. 生物加工过程, 2022, 20(6):658-664. |
LI C, CHEN H M, HU Y S, et al. Cu remediation by phosphate solubilizing bacteria assisted with phosphorus-rich biochar[J]. Chi J Biop Eng, 2022, 20(6):658-664.DOI:10.3969/j.issn.1672-3678.2022.06.008 | |
[35] | DELGADO-BAQUERIZO M, REICH P B, TRIVEDI C, et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes[J]. Nat Ecol Evol, 2020, 4(2):210-220.DOI:10.1038/s41559-019-1084-y. |
[36] | CHEN C F, LIU W J, JIANG X J, et al. Effects of rubber-based agroforestry systems on soil aggregation and associated soil organic carbon:implications for land use[J]. Geoderma, 2017, 299:13-24.DOI:10.1016/j.geoderma.2017.03.021. |
[37] | 朱梓弘, 朱同彬, 杨霖, 等. 中国土壤碱解氮含量与影响因子的空间关系研究[J]. 生态环境学报, 2019, 28(11):2199-2207. |
ZHU Z H, ZHU T B, YANG L, et al. The spatial relationship between soil alkeline-nitrogen content and environmental factors in China[J]. Ecol Environ Sci, 2019, 28(11):2199-2207.DOI:10.16258/j.cnki.1674-5906.2019.11.008. | |
[38] | 张微微, 周怀平, 黄绍敏, 等. 长期不同施肥模式下碱性土有效磷对磷盈亏的响应[J]. 植物营养与肥料学报, 2021, 27(2):263-274. |
ZHANG W W, ZHOU H P, HUANG S M, et al. Response of alkaline soil Olsen-P to phosphorous budget under different long-term fertilization treatments[J]. J Plant Nutr Fertil, 2021, 27(2):263-274.DOI:10.11674/zwyf.20325. |
[1] | 谢燕燕, 郭子武, 林树燕, 左珂怡, 杨丽婷, 徐森, 谷瑞, 陈双林. 毛竹林下植被演替过程中土壤颗粒组成与水分入渗特征[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 108-116. |
[2] | 刘杰, 张浪, 张青萍. 城市绿地系统进化特征及驱动机制分析——以河南省许昌市为例[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 275-284. |
[3] | 韩森, 阮仁宗, 傅巧妮, 许捍卫, 衡雪彪. 基于Sentinel-1和Sentinel-2影像的洪泽湖国家湿地公园水生植被信息提取[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 19-26. |
[4] | 仇实, 于强, 刘泓君, 王慧媛, 李松, 岳德鹏. 基于生态环境质量评价的酒泉市生态空间网络优化[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 199-208. |
[5] | 杨云峰, 余春华. 植被空间类型对城市绿地碳中和绩效的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 209-218. |
[6] | 杨赫, 米锋. 社会经济地位下城市绿地可达性对居民心理健康的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 248-256. |
[7] | 范明阳, 胡萌, 杨园, 方炎明. 中国东部地区马尾松与黄山松群落分类及群落结构和物种多样性特征[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 47-58. |
[8] | 王艳芳, 谭露, 郭红丽, 吴芳, 齐斐, 蒙雯婷, 徐雁南. 基于多源遥感数据的溧阳市林地植被覆盖度时空差异研究[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 183-191. |
[9] | 徐振, 李鸣珂, 陈妍, 周珍琦. 基于在线地图的南京市主城区大型公园绿地骑行可达范围评估[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 219-226. |
[10] | 赵婷, 白红英, 邓晨晖, 他志杰. 基于NDVI与DEM的山地植被垂直带定量划分——以太白山南坡为例[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 165-171. |
[11] | 李史欣, 张福全, 林海峰. 基于机器学习算法的森林火灾风险评估研究[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 49-56. |
[12] | 屈子雅, 张青萍, 张瑞, 王雨洁, 李兰心. 基于双重绩效的城市蓝绿空间布局优化研究——以上海市普陀区为例[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 235-243. |
[13] | 石淞, 李文, 翟育涔, 林晓鹏, 丁一书. 中国东北虎豹国家公园植被NDVI时空变化及原因探究[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 31-41. |
[14] | 徐子涵, 王磊, 崔明, 刘玉国, 赵紫晴, 李嘉豪. 南水北调水源区不同植被恢复模式的土壤化学计量特征[J]. 南京林业大学学报(自然科学版), 2023, 47(3): 173-181. |
[15] | 张金光, 宋安琪, 夏天禹, 赵兵. 社区生活圈视角下城市公园绿地暴露水平测度[J]. 南京林业大学学报(自然科学版), 2023, 47(3): 191-198. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||