[1] |
LI S S, CHEN L G, XU Y J, et al. Identification of floral fragrances in tree peony cultivars by gas chromatography-mass spectrometry[J]. Sci Hortic, 2012, 142:158-165.DOI: 10.1016/j.scienta.2012.05.015.
|
[2] |
张玲. 牡丹花香特异种质筛选及其花香形成关键基因挖掘[D]. 南京: 南京农业大学, 2019.
|
|
ZHANG L. Screening of special floral scent germplasm and exploration of the key genes related to biosynthesis of floral scent in tree peony[D]. Nanjing: Nanjing Agricultural University, 2019.
|
[3] |
赵梦瑶, 张立攀, 王春杰, 等. HS-SPME-GC/MS分析3种牡丹花瓣挥发性成分[J]. 食品工业科技, 2021, 42(16):294-302.
|
|
ZHAO M Y, ZHANG L P, WANG C J, et al. Analysis of volatile components in three peony petals by HS-SPME-GC/MS[J]. Sci Technol Food Ind, 2021, 42(16):294-302.DOI: 10.13386/j.issn1002-0306.2021020153.
|
[4] |
ZHANG X X, SUN J Y, NIU L X, et al. Chemical compositions and antioxidant activities of essential oils extracted from the petals of three wild tree peony species and eleven cultivars[J]. Chem Biodivers, 2017, 14(11):e1700282.DOI: 10.1002/cbdv.201700282.
|
[5] |
YUAN J H, CHENG F Y, ZHOU S L. The phylogeographic structure and conservation genetics of the endangered tree peony,Paeonia rockii (Paeoniaceae),inferred from chloroplast gene sequences[J]. Conserv Genet, 2011, 12(6):1539-1549.DOI: 10.1007/s10592-011-0251-8.
|
[6] |
LUO X N, YUAN M, LI B J, et al. Variation of floral volatiles and fragrance reveals the phylogenetic relationship among nine wild tree peony species[J]. Flavour Fragr J, 2020, 35(2):227-241.DOI: 10.1002/ffj.3558.
|
[7] |
汪松, 解焱. 中国物种红色名录(第1卷)红色名录[M]. 北京: 高等教育出版社, 2004:323.
|
|
WANG S, XIE Y. China species red list[M]. Beijing: Higher Education Press, 2004:323.
|
[8] |
杨小林, 罗健, 鲍隆友. 濒危植物大花黄牡丹种群结构与分布格局[J]. 西南林学院学报, 2006, 26(6):6-9.
|
|
YANG X L, LUO J, BAO L Y. Study on population structure and spatial distribution pattern of the endangered species Paeonia ludlowii[J]. J Southwest For Coll, 2006, 26(6):6-9.DOI: 10.3969/j.issn.2095-1914.2006.06.003.
|
[9] |
王莲英. 中国牡丹品种图志[M]. 北京: 中国林业出版社,1997.
|
|
WANG L Y. Pictorial record of Chinese tree peony varieties[M]. Beijing: China Forestry Publishing House,1997.
|
[10] |
王利民, 张和臣, 符真珠, 等. 牡丹花香育种研究进展[J]. 分子植物育种, 2021:1-14.
|
|
WANG L M, ZHANG H C, FU Z Z, et al. Research progress on flower fragrance breeding of prony[J]. Molecular Plant Breeding, 2021:1-14.
|
[11] |
王二强, 王占营, 刘红凡, 等. 西北品种群牡丹与其他品种群牡丹种群间杂交亲和性研究[J]. 甘肃农业大学学报, 2015, 50(5):81-87.
|
|
WANG E Q, WANG Z Y, LIU H F, et al. Study on the cross compatibility between Xibei group and other cultivar groups of Paeonia suffruticosa[J]. J Gansu Agric Univ, 2015, 50(5):81-87.DOI: 10.13432/j.cnki.jgsau.2015.05.014.
|
[12] |
李宗艳, 秦艳玲, 蒙进芳, 等. 西南牡丹品种起源的ISSR研究[J]. 中国农业科学, 2015, 48(5):931-940.
|
|
LI Z Y, QIN Y L, MENG J F, et al. Study on the origin of tree peony cultivars from southwest China based on ISSR technology[J]. Sci Agric Sin, 2015, 48(5):931-940.DOI: 10.3864/j.issn.0578-1752.2015.05.11.
|
[13] |
丑欢欢. 芍药属牡丹组植物分子系统学的研究[D]. 兰州: 甘肃农业大学, 2017.
|
|
CHOU H H. Studies on molecular systematics of Paeonia Sect.DC[D]. Lanzhou: Gansu Agricultural University, 2017.
|
[14] |
KALLITHRAKA S, ARVANITOYANNIS I S, KEFALAS P, et al. Instrumental and sensory analysis of Greek wines;implementation of principal component analysis (PCA) for classification according to geographical origin[J]. Food Chem, 2001, 73(4):501-514.DOI: 10.1016/S0308-8146(00)00327-7.
|
[15] |
BORDA A M, CLARK D G, HUBER D J, et al. Effects of ethylene on volatile emission and fragrance in cut roses:the relationship between fragrance and vase life[J]. Postharvest Biol Technol, 2011, 59(3):245-252.DOI: 10.1016/j.postharvbio.2010.09.008.
|
[16] |
DUDAREVA N, PICHERSKY E. Biology of floral scent[M]. Boca Racon: CRC Press/Taylor and Francis Group, 2006.
|
[17] |
BERGSTRÖM G, DOBSON H E M, GROTH I. Spatial fragrance patterns within the flowers of Ranunculus acris (Ranunculaceae)[J]. Pl Syst Evol, 1995, 195(3):221-242.DOI: 10.1007/BF00989298.
|
[18] |
范正琪, 李纪元, 李辛雷, 等. 基于HS-SPME/GC-MS分析山茶品种‘克瑞墨大牡丹’花器官香气成分[J]. 植物研究, 2014, 34(1):136-142.
|
|
FAN Z Q, LI J Y, LI X L, et al. Analysis on the aroma components of different floral organs of aromatic Camellia ‘Kramer’s supreme’ based on HS-SPME/GC-MS[J]. Bull Bot Res, 2014, 34(1):136-142.DOI: 10.7525/j.issn.1673-5102.2014.01.019.
|
[19] |
ZHOU Y, PENG Q Y, ZHANG L, et al. Characterization of enzymes specifically producing chiral flavor compounds (R)-and (S)-1-phenylethanol from tea (Camellia sinensis) flowers[J]. Food Chem, 2019, 280:27-33.DOI: 10.1016/j.foodchem.2018.12.035.
|
[20] |
谯正林, 胡慧贞, 鄢波, 等. 花香挥发性苯/苯丙素类化合物的生物合成及基因调控研究进展[J]. 园艺学报, 2021, 48(9):1815-1826.
|
|
QIAO Z L, HU H Z, YAN B, et al. Advances of researches on biosynthesis and regulation of floral volatile benzenoids/phenylpropanoids[J]. Acta Hortic Sin, 2021, 48(9):1815-1826.DOI: 10.16420/j.issn.0513-353x.2020-0549.
|
[21] |
OYAMA-OKUBO N, TSUJI T. Analysis of floral scent compounds and classification by scent quality in tulip cultivars[J]. J Japan Soc Hort Sci, 2013, 82(4):344-353.DOI: 10.2503/jjshs1.82.344.
|
[22] |
YUAN C Y, SHIN M, PARK Y, et al. Linalool alleviates Aβ42-induced neurodegeneration via suppressing ROS production and inflammation in fly and rat models of alzheimer’s disease[J]. Oxidative Med Cell Longev, 2021, 2021:1-10.DOI: 10.1155/2021/8887716.
|
[23] |
杜艺. 利用综合调控策略提高酿酒酵母芳樟醇产量的研究[D]. 扬州: 扬州大学, 2021.
|
|
DU Y. Improved linalool production in Saccharomyces cerevisiae by comprehensive control[D]. Yangzhou: Yangzhou University, 2021.
|
[24] |
SUCHET C, DORMONT L, SCHATZ B, et al. Floral scent variation in two Antirrhinum majus subspecies influences the choice of naïve bumblebees[J]. Behav Ecol Sociobiol, 2011, 65(5):1015-1027.DOI: 10.1007/s00265-010-1106-x.
|
[25] |
PARACHNOWITSCH A L, RAGUSO R A, KESSLER A. Phenotypic selection to increase floral scent emission,but not flower size or colour in bee-pollinated Penstemon digitalis[J]. New Phytol, 2012, 195(3):667-675.DOI: 10.1111/j.1469-8137.2012.04188.x.
|
[26] |
LIU S W, ZHOU L, YU S T, et al. Polymerization of α-pinene using Lewis acidic ionic liquid as catalyst for production of terpene resin[J]. Biomass Bioenergy, 2013, 57:238-242.DOI: 10.1016/j.biombioe.2013.06.005.
|
[27] |
卢贤锐. α-蒎烯和β-蒎烯氧气氧化特性及其产物研究[D]. 南宁: 广西大学, 2019.
|
|
LU X R. Study on the oxidation characteristics and products of α-pinene and β-pinene with oxygen[D]. Nanning: Guangxi University, 2019.
|
[28] |
员梦梦. 11种香花植物鲜花香气成分及香型分类研究[D]. 新乡: 河南科技学院, 2016.
|
|
YUN M M. Study on the aroma composition and flavor styles classification from flowers of eleven fragrant-flowered plants[D]. Xinxiang: Henan Institute of Science and Technology, 2016.
|
[29] |
FARRÉ-ARMENGOL G, FILELLA I, LLUSIÀ J, et al. β-ocimene,a key floral and foliar volatile involved in multiple interactions between plants and other organisms[J]. Molecules, 2017, 22(7):1148.DOI: 10.3390/molecules22071148.
|
[30] |
张佳颖, 尹艺, 王哲, 等. 气相色谱法测定吴茱萸中3种挥发性成分[J]. 化学分析计量, 2021, 30(9):5-10.
|
|
ZHANG J Y, YIN Y, WANG Z, et al. Determination of three volatile components in Evodia rutaecarpa by gas chromatography[J]. Chem Anal Meterage, 2021, 30(9):5-10.DOI: 10.3969/j.issn.1008-6145.2021.09.002.
|
[31] |
MENG L B, SHI R, WANG Q, et al. Analysis of floral fragrance compounds of Chimonanthus praecox with different floral colors in Yunnan,China[J]. Separations, 2021, 8(8):122.DOI: 10.3390/separations8080122.
|
[32] |
刘荣, 田梓轩, 谭安琪, 等. β-罗勒烯信号传导途径关键基因突变体的筛选[J]. 分子植物育种, 2021, 19(6):1947-1953.
|
|
LIU R, TIAN Z X, TAN A Q, et al. Screening of mutants of key genes in β-ocimene signaling pathway[J]. Mol Plant Breed, 2021, 19(6):1947-1953.DOI: 10.13271/j.mpb.019.001947.
|
[33] |
肖牧. 罗勒烯诱导植物防御反应的分子机制研究[D]. 长沙: 湖南农业大学, 2019.
|
|
XIAO M. Insight into the molecular basis of ocimene-primed plant defense[D]. Changsha: Hunan Agricultural University, 2019.
|