南京林业大学学报(自然科学版) ›› 2024, Vol. 48 ›› Issue (1): 1-10.doi: 10.12302/j.issn.1000-2006.202305025
王良桂1,2(), 曾贵敏1,2(), 杨秀莲1, 岳远征1
收稿日期:
2023-05-29
修回日期:
2023-06-20
出版日期:
2024-01-30
发布日期:
2024-01-24
基金资助:
WANG Lianggui1,2(), ZENG Guimin1,2(), YANG Xiulian1, YUE Yuanzheng1
Received:
2023-05-29
Revised:
2023-06-20
Online:
2024-01-30
Published:
2024-01-24
摘要:
色彩和香味是影响园林植物观赏品质的重要因子,对植物的观赏价值具有决定性的影响。类胡萝卜素是植物重要色素物质,单萜是植物关键芳香成分,牻牛儿基牻牛儿基焦磷酸合成酶基因(GGPPS)位于两者合成途径的关键交叉节点,对植物颜色、香味相关代谢物的形成具有重要影响。本研究对GGPPS蛋白的结构与分类、进化聚类情况,并对GGPPS基因的转录调控和其他调控因子进行综述,总结了GGPPS基因影响植物色彩与香味形成的作用机制,探讨了其在植物色彩及香味性状改良方面的应用潜力,认为今后可利用多组学手段挖掘相关转录因子并解析GGPPS基因调控植物色香的分子网络,以期为植物观赏性状的遗传改良工作提供新的基因资源和研究思路。
中图分类号:
王良桂,曾贵敏,杨秀莲,等. GGPPS基因在植物色香性状改良中的应用研究进展[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 1-10.
WANG Lianggui, ZENG Guimin, YANG Xiulian, YUE Yuanzheng. The potential application of GGPPS gene in improving plant color and aroma traits[J].Journal of Nanjing Forestry University (Natural Science Edition), 2024, 48(1): 1-10.DOI: 10.12302/j.issn.1000-2006.202305025.
图1
GGPPS多序列比对 Cs. 茶Camellia sinensis; Mn. 川桑Morus notabilis; Rd. 大马士革玫瑰Rosa × damascena; Sm. 丹参Salvia miltiorrhiza; Rg. 地黄Rehmannia glutinosa; Tc. 东北红豆杉Taxus cuspidata; Eul. 杜仲Eucommia ulmoides; Cu. 日本蜜柑Citrus unshiu; Mp. 胡椒薄荷Mentha × piperita; Mt. 蒺藜苜蓿Medicago truncatula; Os. 粳稻Oryza sativa subsp. japonica; Jc. 麻风树Jatropha curcas; Pm. 马尾松Pinus massoniana; Tm. 曼地亚红豆杉Taxus × media; Pb. 毛喉鞘蕊花Plectranthus barbatus; Js. 茉莉花Jasminum sambac; Ms. 苜蓿Medicago sativa; Ss. 南欧丹参Salvia sclarea; At. 拟南芥Arabidopsis thaliana; Eu. 牛奶子Elaeagnus umbellata; Ca. 欧榛Corylus avellana; Do. 铁皮石斛Dendrobium officinale; Gb. 银杏Ginkgo biloba; Zm. 玉米Zea mays; Li. 窄叶薰衣草Lavandula × intermedia; Gj. 栀子Gardenia jasminoides; Sl. 番茄Solanum lycopersicum; Ot. 金牛球菌Ostreococcus tauri; Cr. 莱茵衣藻Chlamydomonas reinhardtii; Ol. 绿色鞭毛藻Ostreococcus lucimarinus; Pw. 威克海姆原藻Prototheca wickerhamii; Pp. 小立碗藓Physcomitrella patens。下同。The same below。"
[1] | CAPELL T, CHRISTOU P. Progress in plant metabolic engineering[J]. Curr Opin Biotech, 2004, 15(2):148-154.DOI: 10.1016/j.copbio.2004.01.009. |
[2] | LANGE B M, GHASSEMIAN M. Genome organization in Arabidopsis thaliana:a survey for genes involved in isoprenoid and chlorophyll metabolism[J]. Plant Mol Biol, 2003, 51(6):925-948.DOI: 10.1023/a:1023005504702. |
[3] | VRANOVÁ E, COMAN D, GRUISSEM W. Network analysis of the MVA and MEP pathways for isoprenoid synthesis[J]. Annu Rev Plant Biol, 2013, 64:665-700.DOI: 10.1146/annurev-arplant-050312-120116. |
[4] | BOUVIER F, RAHIER A, CAMARA B. Biogenesis,molecular regulation and function of plant isoprenoids[J]. Prog Lipid Res, 2005, 44(6):357-429.DOI: 10.1016/j.plipres.2005.09.003. |
[5] | BECK G, COMAN D, HERREN E, et al. Characterization of the GGPP synthase gene family in Arabidopsis thaliana[J]. Plant Mol Biol, 2013, 82(4/5):393-416.DOI: 10.1007/s11103-013-0070-z. |
[6] | LIANG P H, KO T P, WANG A H J. Structure,mechanism and function of prenyltransferases[J]. Eur J Biochem, 2002, 269(14):3339-3354.DOI: 10.1046/j.1432-1033.2002.03014.x. |
[7] | LIANG P H. Reaction kinetics,catalytic mechanisms,conformational changes,and inhibitor design for prenyltransferases[J]. Biochemistry, 2009, 48(28):6562-6570.DOI: 10.1021/bi900371p. |
[8] | NAGEL R, BERNHOLZ C, VRANOVÁ E, et al. Arabidopsis thaliana isoprenyl diphosphate synthases produce the C25 intermediate geranylfarnesyl diphosphate[J]. Plant J, 2015, 84(5):847-859.DOI: 10.1111/tpj.13064. |
[9] | SATTA A, ESQUIROL L, EBERT B E, et al. Molecular characterization of cyanobacterial short-chain prenyltransferases and discovery of a novel GGPP phosphatase[J]. FEBS J, 2022, 289(21):6672-6693.DOI: 10.1111/febs.16556. |
[10] | COMAN D, ALTENHOFF A, ZOLLER S, et al. Distinct evolutionary strategies in the GGPPS family from plants[J]. Front Plant Sci, 2014, 5:230.DOI: 10.3389/fpls.2014.00230. |
[11] | DONG C, ZHANG M, SONG S S, et al. A small subunit of geranylgeranyl diphosphate synthase functions as an active regulator of carotenoid synthesis in Nicotiana tabacum[J]. Int J Mol Sci, 2023, 24(2):992.DOI: 10.3390/ijms24020992. |
[12] | OKADA K, SAITO T, NAKAGAWA T, et al. Five geranylgeranyl diphosphate synthases expressed in different organs are localized into three subcellular compartments in Arabidopsis[J]. Plant Physiol, 2000, 122(4):1045-1056.DOI: 10.1104/pp.122.4.1045. |
[13] | THOLL D, KISH C M, ORLOVA I, et al. Formation of monoterpenes in Antirrhinum majus and Clarkia breweri flowers involves heterodimeric geranyl diphosphate synthases[J]. Plant Cell, 2004, 16(4):977-992.DOI: 10.1105/tpc.020156. |
[14] | BURKE C C, WILDUNG M R, CROTEAU R. Geranyl diphosphate synthase:cloning,expression,and characterization of this prenyltransferase as a heterodimer[J]. Proc Natl Acad Sci, 1999, 96(23):13062-13067.DOI: 10.1073/pnas.96.23.13062. |
[15] | WANG G D, DIXON R A. Heterodimeric geranyl(geranyl)diphosphate synthase from hop (Humulus lupulus) and the evolution of monoterpene biosynthesis[J]. Proc Natl Acad Sci, 2009, 106(24):9914-9919.DOI: 10.1073/pnas.0904069106. |
[16] | 陈建荣, 毛凯权, 陈果, 等. 栀子(Gardenia jasminoides)GGPPS基因小亚基的克隆及表达分析[J]. 分子植物育种, 2020, 18(10):3199-3206. |
CHEN J R, MAO K Q, CHEN G, et al. Cloning and expression analysis of Gardenia jasminoides GGPPS small subunit gene[J]. Mol Plant Breed, 2020, 18(10):3199-3206.DOI: 10.13271/j.mpb.018.003199. | |
[17] | ZHOU F, WANG C Y, GUTENSOHN M, et al. A recruiting protein of geranylgeranyl diphosphate synthase controls metabolic flux toward chlorophyll biosynthesis in rice[J]. Proc Natl Acad Sci, 2017, 114(26):6866-6871.DOI: 10.1073/pnas.1705689114. |
[18] | 张艺丹. 番茄果实中GGPP代谢调控研究[D]. 南京: 南京大学, 2018. |
ZHANG Y D. Study on the metabolic regulation of GGPP in tomato(Solanum lycopersicum)fruits[D]. Nanjing: Nanjing University, 2018. | |
[19] | VANDERMOTEN S, HAUBRUGE E, CUSSON M. New insights into short-chain prenyltransferases:structural features,evolutionary history and potential for selective inhibition[J]. Cell Mol Life Sci, 2009, 66(23):3685-3695.DOI: 10.1007/s00018-009-0100-9. |
[20] | HAO Z Y, WANG X, ZONG Y X, et al. Enzymatic activity and functional analysis under multiple abiotic stress conditions of a dehydroascorbate reductase gene derived from Liriodendron chinense[J]. Environ Exp Bot, 2019, 167:103850.DOI: 10.1016/j.envexpbot.2019.103850. |
[21] | LIU H H, MA J K, LI H G. Transcriptomic and microstructural analyses in Liriodendron tulipifera Linn.reveal candidate genes involved in nectary development and nectar secretion[J]. BMC Plant Biol, 2019, 19(1):531.DOI: 10.1186/s12870-019-2140-0. |
[22] | YOU L F, GUO L Q, LIN J F, et al. Overproduction of geranylgeraniol in Coprinopsis cinerea by the expression of geranylgeranyl diphosphate synthase gene[J]. J Basic Microb, 2014, 54(12):1387-1394.DOI: 10.1002/jobm.201400152. |
[23] | YANG J W, REN Y J, ZHANG D Y, et al. Transcriptome-based WGCNA analysis reveals regulated metabolite fluxes between floral color and scent in Narcissus tazetta flower[J]. Int J Mol Sci, 2021, 22(15):8249.DOI: 10.3390/ijms22158249. |
[24] | LOIS L M, RODRÍGUEZ-CONCEPCIÓN M, GALLEGO F, et al. Carotenoid biosynthesis during tomato fruit development:regulatory role of 1-deoxy-D-xylulose 5-phosphate synthase[J]. Plant J, 2000, 22(6):503-513.DOI: 10.1046/j.1365-313x.2000.00764.x. |
[25] | MATTHEWS P D, WURTZEL E T. Metabolic engineering of carotenoid accumulation in Escherichia coli by modulation of the isoprenoid precursor pool with expression of deoxyxylulose phosphate synthase[J]. Appl Microbiol Biot, 2000, 53(4):396-400.DOI: 10.1007/s002530051632. |
[26] | ZHANG C G, LIU H H, ZONG Y X, et al., Isolation,expression,and functional analysis of the geranylgeranyl pyrophosphate synthase (GGPPS) gene from Liriodendron tulipifera[J]. Plant Physiol Biochem, 2021, 166:700-711.DOI: 10.1016/j.plaphy.2021.06.052. |
[27] | DONG C, QU G, GUO J G, et al. Rational design of geranylgeranyl diphosphate synthase enhances carotenoid production and improves photosynthetic efficiency in Nicotiana tabacum[J]. Sci Bull, 2022, 67(3):315-327.DOI: 10.1016/j.scib.2021.07.003. |
[28] | 张辉秀, 冷平生, 胡增辉, 等. ‘西伯利亚’百合花香随开花进程变化及日变化规律[J]. 园艺学报, 2013, 40(4):693-702. |
ZHANG H X, LENG P S, HU Z H, et al. The floral scent emitted from Lilium‘Siberia’at different flowering stages and diurnal variation[J]. Acta Hortic Sin, 2013, 40(4):693-702.DOI: 10.16420/j.issn.0513-353x.2013.04.012. | |
[29] | 杜方, 樊俊苗, 王婷, 等. 百合品种和器官中花香和抗性基因的表达模式[J]. 分子植物育种, 2017, 15(6):2126-2132. |
DU F, FAN J M, WANG T, et al. The expression patterns of floral fragrance and resistance related genes in organs and cultivars of lily[J]. Mol Plant Breed, 2017, 15(6):2126-2132.DOI: 10.13271/j.mpb.015.002126. | |
[30] | KUMAR S R, RAI A, BOMZAN D P, et al. A plastid-localized bona fide geranylgeranyl diphosphate synthase plays a necessary role in monoterpene indole alkaloid biosynthesis in Catharanthus roseus[J]. Plant J, 2020, 103(1):248-265.DOI: 10.1111/tpj.14725. |
[31] | YANG Z Y, ZHU Y Y, ZHANG X, et al. Volatile secondary metabolome and transcriptome analysis reveals distinct regulation mechanism of aroma biosynthesis in Syringa oblata and S.vulgaris[J]. Plant Physiol Biochem, 2023, 196:965-973.DOI: 10.1016/j.plaphy.2023.03.003. |
[32] | 庄玥莹, 周利君, 程璧瑄, 等. 基于转录组测序的香水月季花香代谢基因研究[J]. 园艺学报, 2021, 48(11):2262-2274. |
ZHUANG Y Y, ZHOU L J, CHENG B X, et al. Study on the fragrance metabolic genes of Rosa odorata based on transcriptome sequencing[J]. Acta Hortic Sin, 2021, 48(11):2262-2274.DOI: 10.16420/j.issn.0513-353x.2020-0944. | |
[33] | 孙君, 林浥, 俞滢, 等. 茉莉花JsGGPPS基因的克隆及生物信息学与表达分析[J]. 福建农业学报, 2016, 31(4):350-355. |
SUN J, LIN Y, YU Y, et al. Cloning,molecular characterization,and expression of JsGGPPs gene from Jasminum sambac[J]. Fujian J Agric Sci, 2016, 31(4):350-355.DOI: 10.19303/j.issn.1008-0384.2016.04.004. | |
[34] | RASOULI O, AHMADI N, RASHIDI MONFARED S, et al. Physiological,phytochemicals and molecular analysis of color and scent of different landraces of Rosa damascena during flower development stages[J]. Sci Hortic, 2018, 231:144-150.DOI: 10.1016/j.scienta.2017.12.010. |
[35] | BOUVIER F, SUIRE C, D’HARLINGUE A, et al. Molecular cloning of geranyl diphosphate synthase and compartmentation of monoterpene synthesis in plant cells[J]. Plant J, 2000, 24(2):241-252.DOI: 10.1046/j.1365-313x.2000.00875.x. |
[36] | WANG C Y, CHEN Q W, FAN D J, et al. Structural analyses of short-chain prenyltransferases identify an evolutionarily conserved GFPPS clade in Brassicaceae plants[J]. Mol Plant, 2016, 9(2):195-204.DOI: 10.1016/j.molp.2015.10.010. |
[37] | SCHMIDT A, GERSHENZON J. Cloning and characterization of two different types of geranyl diphosphate synthases from Norway spruce (Picea abies)[J]. Phytochemistry, 2008, 69(1):49-57.DOI: 10.1016/j.phytochem.2007.06.022. |
[38] | SCHMIDT A, WÄCHTLER B, TEMP U, et al. A bifunctional geranyl and geranylgeranyl diphosphate synthase is involved in terpene oleoresin formation in Picea abies[J]. Plant Physiol, 2010, 152(2):639-655.DOI: 10.1104/pp.109.144691. |
[39] | ORLOVA I, NAGEGOWDA D A, KISH C M, et al. The small subunit of snapdragon geranyl diphosphate synthase modifies the chain length specificity of tobacco geranylgeranyl diphosphate synthase in planta[J]. Plant Cell, 2009, 21(12):4002-4017.DOI: 10.1105/tpc.109.071282. |
[40] | CHEN Q W, FAN D J, WANG G D. Heteromeric geranyl(geranyl) diphosphate synthase is involved in monoterpene biosynthesis in Arabidopsis flowers[J]. Mol Plant, 2015, 8(9):1434-1437.DOI: 10.1016/j.molp.2015.05.001. |
[41] | KAMRAN H M, HUSSAIN S B, SHANG J Z, et al. Identification and molecular characterization of geranyl diphosphate synthase (GPPS) genes in wintersweet flower[J]. Plants, 2020, 9(5):666.DOI: 10.3390/plants9050666. |
[42] | BURKE C, CROTEAU R. Interaction with the small subunit of geranyl diphosphate synthase modifies the chain length specificity of geranylgeranyl diphosphate synthase to produce geranyl diphosphate[J]. J Biol Chem, 2002, 277(5):3141-3149.DOI: 10.1074/jbc.M105900200. |
[43] | 周君, 陈宗玲, 张琼, 等. 套袋对桃果实成熟过程中酚酸类和类黄酮类物质积累的影响[J]. 园艺学报, 2009, 36(12):1717-1724. |
ZHOU J, CHEN Z L, ZHANG Q, et al. Effects of bagging on accumulation of phenolic acids and flavonoids in peach pericarp during fruit maturity[J]. Acta Hortic Sin, 2009, 36(12):1717-1724.DOI: 10.16420/j.issn.0513-353x.2009.12.003. | |
[44] | 梁敏华, 杨震峰, 苏新国, 等. 桃果实PpFPPS和PpGGPPS基因的克隆及表达分析[J]. 核农学报, 2018, 32(9):1692-1700. |
LIANG M H, YANG Z F, SU X G, et al. Cloning and expression analysis of PpFPPS and PpGGPPS genes from peach fruit[J]. J Nucl Agric Sci, 2018, 32(9):1692-1700.DOI: 10.11869/j.issn.100-8551.2018.09.1692. | |
[45] | 吕勇志, 陈业渊, 王鹏. 芒果GGPPS基因的克隆与表达分析[J]. 分子植物育种, 2017, 15(1):65-70. |
LV Y Z, CHEN Y Y, WANG P. Cloning and expression analysis of GGPPS gene from mango (Mangifera indica)[J]. Mol Plant Breed, 2017, 15(1):65-70.DOI: 10.13271/j.mpb.015.000065. | |
[46] | HENRIQUEZ M A, SOLIMAN A, LI G Y, et al. Molecular cloning,functional characterization and expression of potato (Solanum tuberosum) 1-deoxy-d-xylulose 5-phosphate synthase 1 (StDXS1) in response to Phytophthora infestans[J]. Plant Sci, 2016, 243:71-83.DOI: 10.1016/j.plantsci.2015.12.001. |
[47] | AMENT K, VAN SCHIE C C, BOUWMEESTER H J, et al. Induction of a leaf specific geranylgeranyl pyrophosphate synthase and emission of (E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene in tomato are dependent on both jasmonic acid and salicylic acid signaling pathways[J]. Planta, 2006, 224(5):1197-1208.DOI: 10.1007/s00425-006-0301-5. |
[48] | BARJA M V, EZQUERRO M, BERETTA S, et al. Several geranylgeranyl diphosphate synthase isoforms supply metabolic substrates for carotenoid biosynthesis in tomato[J]. New Phytol, 2021, 231(1):255-272.DOI: 10.1111/nph.17283. |
[49] | WANG Q, HUANG X Q, CAO T J, et al. Heteromeric geranylgeranyl diphosphate synthase contributes to carotenoid biosynthesis in ripening fruits of red pepper (Capsicum annuum var.conoides)[J]. J Agric Food Chem, 2018, 66(44):11691-11700.DOI: 10.1021/acs.jafc.8b04052. |
[50] | SUN Q, HE L, SUN L, et al. Identification of SNP loci and candidate genes genetically controlling norisoprenoids in grape berry based on genome-wide association study[J]. Front Plant Sci, 2023, 14:1142139.DOI: 10.3389/fpls.2023.1142139. |
[51] | GAO Y, WEI W, ZHAO X D, et al. A NAC transcription factor,NOR-like1,is a new positive regulator of tomato fruit ripening[J]. Hortic Res, 2018, 5:75.DOI: 10.1038/s41438-018-0111-5. |
[52] | LI S, XU H, JU Z, et al. The RIN-MC fusion of MADS-box transcription factors has transcriptional activity and modulates expression of many ripening genes[J]. Plant Physiol, 2018, 176(1):891-909.DOI: 10.1104/pp.17.01449. |
[53] | FUJISAWA M, SHIMA Y, NAKAGAWA H, et al. Transcriptional regulation of fruit ripening by tomato FRUITFULL homologs and associated MADS box proteins[J]. Plant Cell, 2014, 26(1):89-101.DOI: 10.1105/tpc.113.119453. |
[54] | DENG C P, SHI M, FU R, et al. ABA-responsive transcription factor bZIP1 is involved in modulating biosynthesis of phenolic acids and tanshinones in Salvia miltiorrhiza[J]. J Exp Bot, 2020, 71(19):5948-5962.DOI: 10.1093/jxb/eraa295. |
[55] | REDDY V A, WANG Q, DHAR N, et al. Spearmint R2R3-MYB transcription factor MsMYB negatively regulates monoterpene production and suppresses the expression of geranyl diphosphate synthase large subunit (MsGPPS.LSU)[J]. Plant Biotechnol J, 2017, 15(9):1105-1119.DOI: 10.1111/pbi.12701. |
[56] | SRIVASTAVA Y, TRIPATHI S, MISHRA B, et al. Cloning and homologous characterization of geranylgeranyl pyrophosphate synthase (GGPPS) from Withania somnifera revealed alterations in metabolic flux towards gibberellic acid biosynthesis[J]. Planta, 2022, 256(1):4.DOI: 10.1007/s00425-022-03912-4. |
[57] | 李泽锋, 魏攀, 夏玉珍, 等. 烟草牻牛儿基牻牛儿基焦磷酸合成酶基因家族的全基因组鉴定[J]. 烟草科技, 2015, 48(6):1-8. |
LI Z F, WEI P, XIA Y Z, et al. Whole genome identification and analysis of tobacco GGPP synthase gene family[J]. Tob Sci Technol, 2015, 48(6):1-8.DOI: 10.16135/j.issn1002-0861.20150601. | |
[58] | ZHOU F, PICHERSKY E. The complete functional characterisation of the terpene synthase family in tomato[J]. New Phytol, 2020, 226(5):1341-1360.DOI: 10.1111/nph.16431. |
[59] | RUIZ-SOLA M Á, COMAN D, BECK G, et al. Arabidopsis geranylgeranyl diphosphate synthase 11 is a hub isozyme required for the production of most photosynthesis-related isoprenoids[J]. New Phytol, 2016, 209(1):252-264.DOI: 10.1111/nph.13580. |
[60] | UKIBE K, HASHIDA K, YOSHIDA N, et al. Metabolic engineering of Saccharomyces cerevisiae for astaxanthin production and oxidative stress tolerance[J]. Appl Environ Microbiol, 2009, 75(22):7205-7211.DOI: 10.1128/AEM.01249-09. |
[61] | BREITENBACH J, VISSER H, VERDOES J C, et al. Engineering of geranylgeranyl pyrophosphate synthase levels and physiological conditions for enhanced carotenoid and astaxanthin synthesis in Xanthophyllomyces dendrorhous[J]. Biotechnol Lett, 2011, 33(4):755-761.DOI: 10.1007/s10529-010-0495-2. |
[62] | CSERNETICS A, NAGY G, ITURRIAGA E A, et al. Expression of three isoprenoid biosynthesis genes and their effects on the carotenoid production of the zygomycete Mucor circinelloides[J]. Fungal Genet Biol, 2011, 48(7):696-703.DOI: 10.1016/j.fgb.2011.03.006. |
[63] | JIAO X, ZHANG Q, ZHANG S F, et al. Efficient co-expression of multiple enzymes from a single promoter mediated by virus 2A sequence in the oleaginous yeast Rhodosporidium toruloides[J]. FEMS Yeast Res, 2018, 18(8):10.1093/femsyr/foy086.DOI: 10.1093/femsyr/foy086. |
[1] | 章晶晶, 胡广, 梁木风. 基于LIM分析的城市公园植物色彩配置应用研究——以杭州西湖曲院风荷为例[J]. 南京林业大学学报(自然科学版), 2022, 46(4): 230-238. |
[2] | 史可, 左国良, 胡海辉. 基于公众审美的哈尔滨城市公园植物色彩评价[J]. 南京林业大学学报(自然科学版), 2022, 46(1): 233-240. |
[3] | 胡丁猛, 许景伟, 王立辉, 囤兴建, 朱升祥, 杨健. ‘蕊沁’等7个海棠新品种[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 238-242. |
[4] | 仲磊, 张焕朝, 范俊俊, 张丹丹, 江皓, 张往祥. 夏季淹水胁迫对北美枫香苗木叶色及光合荧光特性的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(2): 69-76. |
[5] | 沈星诚, 周婷, 范俊俊, 徐立安, 张往祥. 日本红枫春季叶片色彩评价[J]. 南京林业大学学报(自然科学版), 2020, 44(6): 213-220. |
[6] | 陶欢,李存军,谢春春,周静平,淮贺举,蒋丽雅,李凤涛. 基于HSV阈值法的无人机影像变色松树识别[J]. 南京林业大学学报(自然科学版), 2019, 43(03): 99-106. |
[7] | 张晶,浦静,赵聪,姜文龙,范俊俊, 穆茜,杨祎凡,王志东,张往祥. 3个观赏海棠半同胞家系子代叶色动态分析与初选[J]. 南京林业大学学报(自然科学版), 2018, 42(03): 37-44. |
[8] | 张利,丁彦芬,谌金芳,何晓冰. 宁波梅山岛观赏植物应用价值综合评价[J]. 南京林业大学学报(自然科学版), 2014, 38(增刊): 93-98. |
[9] | 王琪,位春傲. 基于GMG的数码打样色彩测控方法[J]. 南京林业大学学报(自然科学版), 2013, 37(05): 161-164. |
[10] | 黄庆林1,蒋小龙2,杜宇2,刘永胜1,楼旭日1,陈云勇2. 氧硫化碳对果蔬、花卉熏蒸处理的研究[J]. 南京林业大学学报(自然科学版), 2007, 31(06): 61-64. |
[11] | 葛玉峰;周宏平;郑加强;张慧春. 基于相对色彩因子的树木图像分割算法[J]. 南京林业大学学报(自然科学版), 2004, 28(04): 19-22. |
[12] | 丁一巨;赵奇僧;周本琳. 自然保护区观赏植物资源评价及其应用[J]. 南京林业大学学报(自然科学版), 1993, 17(01): 21-26. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||