石蒜年生长周期内NSC及其代谢酶活性变化

魏绪英, 张瑶, 马美霞, 姜雪茹, 陈慧婷, 吴靖, 杨玉, 蔡军火

南京林业大学学报(自然科学版) ›› 2024, Vol. 48 ›› Issue (1) : 106-114.

PDF(1979 KB)
PDF(1979 KB)
南京林业大学学报(自然科学版) ›› 2024, Vol. 48 ›› Issue (1) : 106-114. DOI: 10.12302/j.issn.1000-2006.202201008
研究论文

石蒜年生长周期内NSC及其代谢酶活性变化

作者信息 +

Changes of non-structured carbohydrate and starch metabolizing enzyme in bulbs of Lycoris radiata within the annual growth cycle

Author information +
文章历史 +

摘要

【目的】掌握石蒜独特的生长节律与非结构性碳水化合物(NSC)及其相关代谢酶活性变化的内在联系,为进一步阐述石蒜特殊的开花习性与叶片夏季休眠的内在生理机制提供参考。【方法】以4年生红花石蒜(Lycoris radiata)鳞茎为材料,采用分光光度法和微量法分别在展叶期、叶旺长期、叶成熟期、叶枯黄期、休眠期、开花期等6个阶段,测定了鳞茎内6种NSC含量和9种淀粉代谢相关酶的活性。【结果】① 不同发育期鳞茎内的NSC含量差异显著。其中,NSC总含量及可溶性糖、果糖、还原糖的含量均以叶成熟期(LMa)最高,而淀粉和蔗糖的含量则以叶枯黄期(LWi)最高;淀粉积累的峰值要滞后于可溶性糖。② 不同发育时期石蒜鳞茎内的9种代谢酶活性均有极显著差异(P<0.01)。在同一时期,腺苷二磷酸葡萄糖焦磷酸化酶(AGP)酶活性显著高于其他8种酶,β-淀粉酶(β-AL)、淀粉分支酶(SBE)活性也分别始终高于α-淀粉酶(α-AL)和淀粉脱分支酶(DBE);可溶性淀粉合成酶(SSS)、蔗糖磷酸合酶(SPS)活性总体分别高于结合态淀粉合成酶(GBSS)、蔗糖合成酶(SuS),这与不同时期鳞茎内的果糖含量均显著高于蔗糖含量相呼应。③ 蔗糖和淀粉含量均与SBE活性显著负相关,与GBSS活性极显著正相关,而果糖和麦芽糖相反(与SBE活性正相关,而与GBSS活性极显著负相关)。另外,蔗糖含量还与β-AL活性也负相关。【结论】鳞茎内NSC的含量变化与叶片生长的旺盛状态呈正相关。其中,鳞茎内的淀粉积累,主要受AGP、SPS(正向)和SSS、SBE、DBE(反向)的双向调控;鳞茎内的蔗糖积累主要来源是淀粉的水解,而非光合器官的转运而来。另外,在年生长周期内,鳞茎内的果糖含量均显著高于蔗糖,可能与石蒜的独特生物学特性有关。

Abstract

【Objective】The study investigated inherent relationship between the unique growth rhythm of Lycoris spp. and changes in non-structural carbohydrates (NSC) and related metabolic enzyme activities. The aim was to provide a research basis for studies of the intrinsic physiological mechanism of L. spp. unique flowering habits and summer leaf dormancy.【Method】In 4-year-old clonal bulbs of L. radiata, the contents of six NSC and nine starch metabolism activities were determined by spectrophotometric and micrometric methods at six growth stages, including leafing-out period, rapid leaf extension period, leaf maturity period, leaf withering period, dormancy period and flowering period.【Result】The NSC content in bulbs at different developmental stages was significantly different. Total NSC, soluble sugar, fructose, and reductive sugar content were the highest in the leaf maturity period. Starch and sucrose contents were the highest in the leaf withering period. The peak starch accumulation lagged behind that of soluble sugars. Significant differences were evident in the activities of nine metabolic enzymes in bulbs at different developmental stages (P < 0.01). During the same period, the activity of ADP-glucose pyrophorylase (AGP) was significantly higher than those of the other eight enzymes. The activities of β-amylase (β-AL) and starch branching enzyme (SBE) were always higher than α-amylase (α-AL) and starch debranching enzyme(DBE), and the activities of soluble starch synthase (SSS) and sucrose phosphate synthase (SPS) were respectively higher than that of granule-bound starch synthase (GBSS) and sucrose synthase (SuS), which corresponded with the significantly higher fructose content in bulbs in different periods. Sucrose and starch contents were negatively correlated with SBE activity and positively correlated with GBSS activity. The opposite correlations were observed for fructose and maltose. In addition, sucrose content was also negatively correlated with the activity of β-AL.【Conclusion】The change of NSC content in bulbs was positively correlated with the vigorous state of leaf growth. Starch accumulation in bulbs was mainly positively regulated by AGP and SPS and negatively regulated by SSS, SBE and DBE. The accumulation of sucrose in bulbs is mainly from amylolysis, rather than translocation of photosynthetic organs. In addition, the fructose content of bulbs was significantly higher than the sucrose content during the annual growth cycle, which may be related to the unique biological characteristics of L. radiata.

关键词

石蒜 / 生长发育 / 休眠 / 鳞茎生理 / 非结构性碳水化合物 / 糖代谢

Key words

Lycoris radiata / growth and development / dormancy / bulb physiology / non-structural curbohydrates (NSC) / sugar metabolism

引用本文

导出引用
魏绪英, 张瑶, 马美霞, . 石蒜年生长周期内NSC及其代谢酶活性变化[J]. 南京林业大学学报(自然科学版). 2024, 48(1): 106-114 https://doi.org/10.12302/j.issn.1000-2006.202201008
WEI Xuying, ZHANG Yao, MA Meixia, et al. Changes of non-structured carbohydrate and starch metabolizing enzyme in bulbs of Lycoris radiata within the annual growth cycle[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2024, 48(1): 106-114 https://doi.org/10.12302/j.issn.1000-2006.202201008
中图分类号: S682.29   

参考文献

[1]
LIU K, TANG C F, ZHOU S B, et al. Comparison of the photosynthetic characteristics of four Lycoris species with leaf appearing in autumn under field conditions[J]. Photosynthetica, 2012, 50(4):570-576.DOI: 10.1007/s11099-012-0067-x.
[2]
王仁师. 关于石蒜属(Lycoris)的生态地理[J]. 西南林学院学报, 1990, 10(1):41-48.
WANG R S. The ecogeography concerning genus lycoris[J]. J Southwest For Coll, 1990, 10(1):41-48.
[3]
CAI J H, FAN J J, WEI X Y, et al. A three-dimensional analysis of summer dormancy in the red spider lily (Lycoris radiata)[J]. Hort Science, 2019, 54(9):1459-1464.DOI: 10.21273/hortsci14080-19.
[4]
蔡军火, 魏绪英, 张露. 遮光对石蒜叶片生长及开花期性状的影响[J]. 草业科学, 2011, 28(12):2092-2095.
CAI J H, WEI X Y, ZHANG L. Effects of different shading on leaf growth and flowering characters of Lycoris radiata[J]. Pratacultural Sci, 2011, 28(12):2092-2095.
[5]
HORVATH D. Common mechanisms regulate flowering and dormancy[J]. Plant Sci, 2009, 177(6):523-531.DOI: 10.1016/j.plantsci.2009.09.002.
[6]
DAVIES J N, KEMPTON R J. Carbohydrate changes in tulip bulbs during storage and forcing[J]. Acta Hortic, 1975(47):353-364.DOI: 10.17660/actahortic.1975.47.49.
[7]
YEE D A, TISSUE D T. Relationships between non-structural carbohydrate concentration and flowering in a subtropical herb, Heliconia caribaea (Heliconiaceae)[J]. Caribbean Journal Ofence, 2018, 41(2):243-249. DOI:10.1206/0003-0090(2005)294[0001:SROTFF]2.0.CO;2.
[8]
SAKAMAKI Y, INO Y. Response of non-structural carbohydrate content of belowground parts in Equisetum arvense according to the irradiance change during a growing season[J]. J Plant Res, 2004, 117(5):385-391.DOI: 10.1007/s10265-004-0171-5.
[9]
PRADO F, BOERO C, GALLARDO M, et al. Effect of NaCl on germination,growth,and soluble sugar content in Chenopodium quinoa Willd.seeds[J]. Bot Bull Acad Sin, 2000, 41:27-34.10.7016/BBAS.200001.0027.
[10]
ROSA M, PRADO C, PODAZZA G, et al. Soluble sugars:metabolism,sensing and abiotic stress: a complex network in the life of plants[J]. Plant Signal Behav, 2009, 4(5):388-393.DOI: 10.4161/psb.4.5.8294.
[11]
刘海坤, 刘小宁, 黄玉芳, 等. 不同氮水平下小麦植株的碳氮代谢及碳代谢与赤霉病的关系[J]. 中国生态农业学报, 2014, 22(7):782-789.
LIU H K, LIU X N, HUANG Y F, et al. Effect of nitrogen application on carbon and nitrogen metabolisms and relationship between carbon metabolism and wheat scab[J]. Chin J Eco Agric, 2014, 22(7):782-789.DOI: 10.3724/SP.J.1011.2014.40007.
[12]
向芬, 李维, 刘红艳, 等. 氮素水平对茶树叶片氮代谢关键酶活性及非结构性碳水化合物的影响[J]. 生态学报, 2019, 39(24):9052-9057.
XIANG F, LI W, LIU H Y, et al. Effects of nitrogen levels on key enzyme activities and non-structural carbohydrates in nitrogen metabolism in tea leaves[J]. Acta Ecol Sin, 2019, 39(24):9052-9057.DOI: 10.5846/stxb201810112203.
[13]
王晓静. 中国石蒜淀粉积累与鳞茎生长的关系研究[D]. 南京: 南京林业大学, 2011.
WANG X J. Study on accumulation of starch and growth of Lycoris chinensis traub bulbs[D]. Nanjing: Nanjing Forestry University, 2011.
[14]
PAULA S, OJEDA F. Belowground starch consumption after recurrent severe disturbance in three resprouter species of the genus Erica[J]. Botany, 2009, 87(3):253-259.DOI: 10.1139/b08-134.
[15]
张莹婷, 杨秀莲, 何岭, 等. 2种石蒜花芽分化与碳水化合物、抗氧化物酶及内源激素变化的关系[J]. 安徽农业大学学报, 2019, 46(2):342-349.
ZHANG Y T, YANG X L, HE L, et al. Relationships between flower bud differentiation in two kinds of Lycoris and the changes of carbohydrate,antioxidant enzymes and endogenous hormones[J]. J Anhui Agric Univ, 2019, 46(2):342-349.DOI: 10.13610/j.cnki.1672-352x.20190320.023.
[16]
LIU Y S, WANG X B, JIN H, et al. Lower total soluble sugars in vegetative parts of soybean plants are responsible for reduced pod number under shading conditions[J]. Aust J Crop Sci, 2011, 5:1852-1857.Doi:10.1016/j.agrformet.2011.06.001
[17]
王书丽, 郭天财, 王晨阳, 等. 两种筋力型小麦叶、粒可溶性糖含量及与籽粒淀粉积累的关系[J]. 河南农业科学, 2005, 34(4):12-15.
WANG S L, GUO T C, WANG C Y, et al. Soluble sugar contents in leaf and grain in two gluten wheats and its relationship with grain starch accumulation[J]. J Henan Agric Sci, 2005, 34(4):12-15.DOI: 10.3969/j.issn.1004-3268.2005.04.003.
[18]
BORIBOONKASET T, THEERAWITAYA C, PICHAKUM A, et al. Expression levels of some starch metabolism related genes in flag leaf of two contrasting rice genotypes exposed to salt stress[J]. Aust J Crop Sci, 2012, 6(11):1579-1586.
[19]
GILL P K, SHARMA A D, SINGH P, et al. Changes in germination,growth and soluble sugar contents of Sorghum bicolor (L.) Moench seeds under various abiotic stresses[J]. Plant Growth Regul, 2003, 40(2):157-162.DOI: 10.1023/A:1024252222376.
[20]
RUAN Y L. Sucrose metabolism:gateway to diverse carbon use and sugar signaling[J]. Annu Rev Plant Biol, 2014, 65:33-67.DOI: 10.1146/annurev-arplant-050213-040251.
[21]
LUO X L, HUANG Q F. Relationships between leaf and stem soluble sugar content and tuberous root starch accumulation in cassava[J]. J Agric Sci, 2011, 3(2):64-72.DOI: 10.5539/jas.v3n2p64.
[22]
袁圣勇, 罗兴录, 曾文丹, 等. 高低淀粉木薯品种可溶性糖转运、分配与块根淀粉积累的关系研究[J]. 中国农学通报, 2013, 29(33):153-157.
YUAN S Y, LUO X L, ZENG W D, et al. Studies on the relationship between soluble sugar’s transportation,distribution and the starch accumulation in the root tube of cassava[J]. Chin Agric Sci Bull, 2013, 29(33):153-157.DOI: 10.3969/j.issn.1000-6850.2013.33.027.
[23]
BANSAL S, GERMINO M J. Temporal variation of nonstructural carbohydrates in montane conifers:similarities and differences among developmental stages,species and environmental conditions[J]. Tree Physiol, 2009, 29(4):559-568.DOI: 10.1093/treephys/tpn045.
[24]
WU Y, REN Z M, GAO C, et al. Change in sucrose cleavage pattern and rapid starch accumulation govern lily shoot-to-bulblet transition in vitro[J]. Front Plant Sci, 2021, 11:564713.DOI: 10.3389/fpls.2020.564713.
[25]
孙红梅, 李天来, 李云飞. 百合鳞茎发育过程中碳水化合物含量及淀粉酶活性变化[J]. 植物研究, 2005, 25(1):59-63.
SUN H M, LI T L, LI Y F. Changes of carbohydrate and amylase in lily bulb during bulb development[J]. Bull Bot Res, 2005, 25(1):59-63.DOI: 10.3969/j.issn.1673-5102.2005.01.019.
[26]
邵京, 王晓静, 周坚. 中国石蒜鳞茎中淀粉粒的分布特征[J]. 西北植物学报, 2010, 30(4):713-718.
SHAO J, WANG X J, ZHOU J. Starch granule distribution characteristics in Lycoris chinensis bulb[J]. Acta Bot Boreali Occidentalia Sin,2010, 30(4):713-718.DOI:1000-4025( 2010)04-0713-016.
[27]
鲍淳松, 张鹏翀, 张海珍, 等. 长筒石蒜生物量构成和养分质量分数季节动态[J]. 东北林业大学学报, 2012, 40(9):34-38.
BAO C S, ZHANG P C, ZHANG H Z, et al. Seasonal changes of biomass allocation and micronutrient contents in Lycoris longituba[J]. J Northeast For Univ, 2012, 40(9):34-38. DOI: 10.13759/j.cnki.dlxb.2012.09.018.
[28]
LUNN J E, MACRAE E. New complexities in the synthesis of sucrose[J]. Curr Opin Plant Biol, 2003, 6(3):208-214.DOI: 10.1016/s1369-5266(03)00033-5.
[29]
周倩, 曹家畅, 崔明昆, 等. 非结构性糖在植物对干旱胁迫响应与适应中的作用[J]. 安徽农业科学, 2018, 46(30):24-28.
ZHOU Q, CAO J C, CUI M K, et al. Roles of non-structural sugars in response and adaptation of plants to drought stress[J]. J Anhui Agric Sci, 2018, 46(30):24-28. DOI: 10.13989/j.cnki.0517-6611.2018.30.008.
[30]
叶香媛, 周文彬. 植物果糖激酶研究进展[J]. 科学通报, 2021, 66(22):2820-2831.
YE X Y, ZHOU W B. Research advances in plant fructokinases[J]. Chin Sci Bull, 2021, 66(22):2820-2831.DOI: 10.1360/TB-2020-1577.
[31]
GRANOT D, DAVID-SCHWARTZ R, KELLY G. Hexose kinases and their role in sugar-sensing and plant development[J]. Front Plant Sci, 2013, 4:44.DOI: 10.3389/fpls.2013.00044.
[32]
PEGO J V, SMEEKENS S C. Plant fructokinases: a sweet family get-together[J]. Trends Plant Sci, 2000, 5(12):531-536.DOI: 10.1016/s1360-1385(00)01783-0.
[33]
蔡军火, 魏绪英, 李金峰, 等. 环境温度对红花石蒜生长节律的调控研究[J]. 江西农业大学学报, 2018, 40(1):24-31.
CAI J H, WEI X Y, LI J F, et al. The regulation and control of ambient temperature on growth rhythm of Lycoris radiata[J]. Acta Agric Univ Jiangxiensis, 2018, 40(1):24-31.DOI: 10.13836/j.jjau.2018004.
[34]
BUYSSE J, MERCKX R. An improved colorimetric method to quantify sugar content of plant tissue[J]. J Exp Bot, 1993, 44(10):1627-1629.DOI: 10.1093/jxb/44.10.1627.
[35]
KABEYA D, SAKAI S. The role of roots and cotyledons as storage organs in early stages of establishment in Quercus crispula: a quantitative analysis of the nonstructural carbohydrate in cotyledons and roots[J]. Ann Bot, 2003, 92(4):537-545.DOI: 10.1093/aob/mcg165.
[36]
YU D P, WANG Q W, LIU J Q, et al. Formation mechanisms of the alpine Erman’s birch (Betula ermanii) treeline on Changbai Mountain in northeast China[J]. Trees, 2014, 28(3):935-947.DOI: 10.1007/s00468-014-1008-z.
[37]
林向礼, 董振楚. 石蒜粉做铸造砂芯粘合剂[J]. 植物杂志, 1980(5):15.
LIN X L, DONG Z C. Lycoris radiata powder as adhesive for casting sand core[J]. Life World, 1980(5):15.
[38]
孙红梅, 汪可心, 王春夏, 等. 百合鳞茎发育过程中可溶性糖含量的变化[J]. 河北农业大学学报, 2008, 31(5):61-65.DOI: 10.3969/j.issn.1000-1573.2008.05.014.
SUN H M, WANG K X, WANG C X, et al. Variation of soluble sugar content in lily bulbs during bulb development[J]. J Agric Univ Hebei, 2008, 31(5):61-65.
[39]
刘芳, 陈业雯, 李丹丹, 等. 细叶百合低温解除休眠过程中鳞茎内糖分及相关酶的研究[J]. 草业学报, 2016, 25(5):60-68.
LIU F, CHEN Y W, LI D D, et al. Changes in carbohydrate status and related enzymes of Lilium pumilum bulbs during breaking dormancy under refrigerated conditions[J]. Acta Prataculturae Sin, 2016, 25(5):60-68.DOI: 10.11686/cyxb2015343.
[40]
高晓辰. 百合鳞茎发育和冷藏期间生理生化变化的研究[D]. 杭州: 浙江大学, 2002.
GAO X C. Studies on physiological mechanisms of lily bulb in developmental and cooling storage periods[D]. Hangzhou: Zhejiang University, 2002.
[41]
罗琦. 石蒜属植物鳞茎发育生理及盐胁迫下叶片生理变化研究[D]. 芜湖: 安徽师范大学, 2007.
LUO Q. Studies on developmental physiology of bulbs and physiological changes of leaves under NaCl stress in Lycoris[D]. Wuhu: Anhui Normal University, 2007.
[42]
蒲小龙, 郭志雄, 姚婷婷, 等. 水仙鳞茎膨大期各器官可溶性糖的含量及分布[J]. 热带作物学报, 2017, 38(3):395-402.
PU X L, GUO Z X, YAO T T, et al. Soluble sugars content and distribution of different organs of Narcissus tazetta L.var. chinensis(M.Roem.)in bulb swelling stage[J]. Chin J Trop Crops, 2017, 38(3):395-402.DOI: 10.3969/j.issn.1000-2561.2017.03.002.
[43]
吴沙沙. 东方百合‘索邦’鳞茎源-库转换规律研究[D]. 北京: 北京林业大学, 2012.DOI: 10.1111/ppl.13283.
WU S S. Rules of source-sink exchange of the bulb of oriental lily‘Sorbonne’[D]. Beijing: Beijing Forestry University, 2012.
[44]
SADDHE A A, MANUKA R, PENNA S. Plant sugars:homeostasis and transport under abiotic stress in plants[J]. Physiol Plant, 2021, 171(4):739-755.
[45]
邵京. 石蒜鳞茎中淀粉的积累规律与应用基础研究[D]. 南京: 南京林业大学, 2010.
SHAO J. Basic study on accumulation and utilization of starch in bulbs of Lycoris[D]. Nanjing: Nanjing Forestry University, 2010.
[46]
刘凌霄, 沈法富, 卢合全, 等. 蔗糖代谢中蔗糖磷酸合成酶(SPS)的研究进展[J]. 分子植物育种, 2005, 3(2):275-281.
LIU L X, SHEN F F, LU H Q, et al. Research advance on sucrose phosphate synthase in sucrose metabolism[J]. Mol Plant Breed, 2005, 3(2):275-281.DOI: 10.3969/j.issn.1672-416X.2005.02.020.
[47]
秦巧平, 张上隆, 谢鸣, 等. 果实糖含量及成分调控的分子生物学研究进展[J]. 果树学报, 2005, 22(5):519-525.
QIN Q P, ZHANG S L, XIE M, et al. Progress on the research of the molecular regulation of sugar content and composition in fruit[J]. J Fruit Sci, 2005, 22(5):519-525.DOI: 10.3969/j.issn.1009-9980.2005.05.019.
[48]
刘永忠, 李道高. 柑橘果实糖积累与蔗糖代谢酶活性的研究[J]. 园艺学报, 2003, 30(4):457-459.
LIU Y Z, LI D G. Sugar accumulation and changes of sucrose-metabolizing enzyme activities in citrus fruit[J]. Acta Hortic Sin, 2003, 30(4):457-459.DOI: 10.16420/j.issn.0513-353x.2003.04.023.
[49]
ELLING L. Effect of metal ions on sucrose synthase from rice grains:a study on enzyme inhibition and enzyme topography[J]. Glycobiology, 1995, 5(2):201-206.DOI: 10.1093/glycob/5.2.201.
[50]
LEE H S, STURM A. Purification and characterization of neutral and alkaline invertase from carrot[J]. Plant Physiol, 1996, 112(4):1513-1522.DOI: 10.1104/pp.112.4.1513.
[51]
STURM A. Invertases.primary structures,functions,and roles in plant development and sucrose partitioning[J]. Plant Physiol, 1999, 121(1):1-8.DOI: 10.1104/pp.121.1.1.
[52]
王永章, 王小芳, 张大鹏. 苹果果实转化酶的种类和特性研究[J]. 中国农业大学学报, 2001, 6(5):9-14.
WANG Y Z, WANG X F, ZHANG D P. Study of invertase in apple fruit[J]. J China Agric Univ, 2001, 6(5):9-14.DOI: 10.3321/j.issn:1007-4333.2001.05.003.

基金

江西省高校人文社会科学研究项目(YS21106)
国家自然科学基金项目(31960327)
国家自然科学基金项目(32360420)
江西省自然科学基金项目(20202BABL205004)

编辑: 吴祝华
PDF(1979 KB)

Accesses

Citation

Detail

段落导航
相关文章

/