南京林业大学学报(自然科学版) ›› 2024, Vol. 48 ›› Issue (1): 131-139.doi: 10.12302/j.issn.1000-2006.202205036
彭仲韬1(), 郭嘉兴1, 王艺璇2, 王磊2, 金光泽1, 刘志理1,*()
收稿日期:
2022-05-23
修回日期:
2023-05-13
出版日期:
2024-01-30
发布日期:
2024-01-24
通讯作者:
刘志理
基金资助:
PENG Zhongtao1(), GUO Jiaxing1, WANG Yixuan2, WANG Lei2, JIN Guangze1, LIU Zhili1,*()
Received:
2022-05-23
Revised:
2023-05-13
Online:
2024-01-30
Published:
2024-01-24
Contact:
LIU Zhili
摘要:
【目的】叶性状对植物资源获取、光合能力等起重要作用。本研究分析植物通过叶性状的调整以适应不同生长期的生存策略。【方法】以小兴安岭3种典型槭树:花楷槭(Acer ukurunduense)、青楷槭(A. tegmentosum)和五角枫(A. pictum subsp. mono)为研究对象,在展叶期(6月初)、叶稳定期(7月中旬)和叶凋落期(9月初)3个时期分别测定比叶面积、叶干物质含量、叶绿素含量及叶厚4个叶性状,分析叶性状的生长动态以及性状间的相关性。【结果】在不同生长期,3种槭树的叶性状均发生了显著变异,且随生长期变化存在相似的变异规律,展叶期的叶厚和叶稳定期的叶干物质含量显著高于其余两个时期。叶性状间的相关关系随生长期不同发生了显著变化。3种槭树在展叶期选择“快速投资-收益”型策略,在叶稳定期和叶凋落期则偏向于“缓慢投资-收益”型策略。叶性状及其相关性在不同树种间也存在显著差异。【结论】植物可通过叶性状变异及调整叶性状间的相关关系来适应生长期的变化,并最终形成不同的生存策略。
中图分类号:
彭仲韬,郭嘉兴,王艺璇,等. 小兴安岭3种槭树不同生长期叶性状变异及相关性分析[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 131-139.
PENG Zhongtao, GUO Jiaxing, WANG Yixuan, WANG Lei, JIN Guangze, LIU Zhili. Variation and correlation analysis of leaf traits of three Acer species in different growth periods in the Xiaoxing’an Mountains of northeast China[J].Journal of Nanjing Forestry University (Natural Science Edition), 2024, 48(1): 131-139.DOI: 10.12302/j.issn.1000-2006.202205036.
[1] | WRIGHT I J, REICH P B, CORNELISSEN J H C, et al. Assessing the generality of global leaf trait relationships[J]. New Phytol, 2005, 166(2):485-496.DOI: 10.1111/j.1469-8137.2005.01349.x. |
[2] | FAJARDO A, SIEFERT A. Phenological variation of leaf functional traits within species[J]. Oecologia, 2016, 180(4):951-959.DOI: 10.1007/s00442-016-3545-1. |
[3] | HE N P, LI Y, LIU C C, et al. Plant trait networks:improved resolution of the dimensionality of adaptation[J]. Trends Ecol Evol, 2020, 35(10):908-918.DOI: 10.1016/j.tree.2020.06.003. |
[4] | OSNAS J L D, LICHSTEIN J W, REICH P B, et al. Global leaf trait relationships:mass,area,and the leaf economics spectrum[J]. Science, 2013, 340(6133):741-744.DOI: 10.1126/science.1231574. |
[5] | 刘晓娟, 马克平. 植物功能性状研究进展[J]. 中国科学:生命科学, 2015, 45(4):325-339. |
LIU X J, MA K P. Plant functional traits: concepts,applications and future directions[J]. Sci Sin (Vitae), 2015, 45(4):325-339.DOI: 10.1360/N052014-00244. | |
[6] | CUI E Q, WENG E S, YAN E R, et al. Robust leaf trait relationships across species under global environmental changes[J]. Nat Commun, 2020, 11(1):2999.DOI: 10.1038/s41467-020-16839-9. |
[7] | FUNK J L, LARSON J E, VOSE G. Leaf traits and performance vary with plant age and water availability in Artemisia californica[J]. Ann Bot, 2021, 127(4):495-503.DOI: 10.1093/aob/mcaa106. |
[8] | JANKOWSKI A, WYKA T P, ZYTKOWIAK R, et al. Cold adaptation drives variability in needle structure and anatomy in Pinus sylvestris L.along a 1 900 km temperate-boreal transect[J]. Funct Ecol, 2017, 31(12):2212-2223.DOI: 10.1111/1365-2435.12946. |
[9] | 张林, 罗天祥. 植物叶寿命及其相关叶性状的生态学研究进展[J]. 植物生态学报, 2004, 28(6):844-852. |
ZHANG L, LUO T X. Advances in ecological studies on leaf lifespan and associated leaf traits[J]. Acta Phytoecol Sin, 2004, 28(6):844-852.DOI:10.1752/cjpe.2004.0110. | |
[10] | POORTER L. Leaf traits show different relationships with shade tolerance in moist versus dry tropical forests[J]. New Phytol, 2009, 181(4):890-900.DOI: 10.1111/j.1469-8137.2008.02715.x. |
[11] | BASNETT S, DEVY S M. Phenology determines leaf functional traits across Rhododendron species in the Sikkim Himalaya[J]. Alp Bot, 2021, 131(1):63-72.DOI: 10.1007/s00035-020-00244-5. |
[12] | LI S J, WANG H, GOU W, et al. Leaf functional traits of dominant desert plants in the Hexi Corridor,northwestern China:trade-off relationships and adversity strategies[J]. Glob Ecol Conserv, 2021, 28:e01666.DOI: 10.1016/j.gecco.2021.e01666. |
[13] | CONEVA V, CHITWOOD D H. Genetic and developmental basis for increased leaf thickness in the Arabidopsis Cvi ecotype[J]. Front Plant Sci, 2018, 9:322.DOI: 10.3389/fpls.2018.00322. |
[14] | RICHARDSON A D, DUIGAN S P, BERLYN G P. An evaluation of noninvasive methods to estimate foliar chlorophyll content[J]. New Phytol, 2002, 153(1):185-194.DOI: 10.1046/j.0028-646X.2001.00289.x. |
[15] | WU J, ALBERT L P, LOPES A P, et al. Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests[J]. Science, 2016, 351(6276):972-976.DOI: 10.1126/science.aad5068. |
[16] | BURNETT A C, SERBIN S P, LAMOUR J, et al. Seasonal trends in photosynthesis and leaf traits in scarlet oak[J]. Tree Physiol, 2021, 41(8):1413-1424.DOI: 10.1093/treephys/tpab015. |
[17] | LIU Y Z, LI G Y, WU X W, et al. Linkage between species traits and plant phenology in an alpine meadow[J]. Oecologia, 2021, 195(2):409-419.DOI: 10.1007/s00442-020-04846-y. |
[18] | MOORE T E, JONES C S, CHONG C, et al. Impact of rainfall seasonality on intraspecific trait variation in a shrub from a Mediterranean climate[J]. Funct Ecol, 2020, 34(4):865-876.DOI: 10.1111/1365-2435.13533. |
[19] | CHAVANA-BRYANT C, MALHI Y, WU J, et al. Leaf aging of Amazonian canopy trees as revealed by spectral and physiochemical measurements[J]. New Phytol, 2017, 214(3):1049-1063.DOI: 10.1111/nph.13853. |
[20] | HUANG L, KOUBEK T, WEISER M, et al. Environmental drivers and phylogenetic constraints of growth phenologies across a large set of herbaceous species[J]. J Ecol, 2018, 106(4):1621-1633.DOI: 10.1111/1365-2745.12927. |
[21] | FLYNN D F B, WOLKOVICH E M. Temperature and photoperiod drive spring phenology across all species in a temperate forest community[J]. New Phytol, 2018, 219(4):1353-1362.DOI: 10.1111/nph.15232. |
[22] | LIU Z L, JIANG F, LI F R, et al. Coordination of intra and inter-species leaf traits according to leaf phenology and plant age for three temperate broadleaf species with different shade tolerances[J]. For Ecol Manag, 2019, 434:63-75.DOI: 10.1016/j.foreco.2018.12.008. |
[23] | MCKOWN A D, GUY R D, AZAM M S, et al. Seasonality and phenology alter functional leaf traits[J]. Oecologia, 2013, 172(3):653-665.DOI: 10.1007/s00442-012-2531-5. |
[24] | CROFT H, CHEN J M, LUO X Z, et al. Leaf chlorophyll content as a proxy for leaf photosynthetic capacity[J]. Glob Change Biol, 2017, 23(9):3513-3524.DOI: 10.1111/gcb.13599. |
[25] | WRIGHT I J, REICH P B, WESTOBY M, et al. The worldwide leaf economics spectrum[J]. Nature, 2004, 428(6985):821-827.DOI: 10.1038/nature02403. |
[26] | FAJARDO A, MORA J P, ROBERT E. Corner’s rules pass the test of time:little effect of phenology on leaf-shoot and other scaling relationships[J]. Ann Bot, 2020, 126(7): 1129-1139. |
[27] | 徐丽娜, 金光泽. 小兴安岭凉水典型阔叶红松林动态监测样地:物种组成与群落结构[J]. 生物多样性, 2012, 20(4):470-481. |
XU L N, JIN G Z. Species composition and community structure of a typical mixed broad-leaved-Korean pine (Pinus koraiensis) forest plot in Liangshui Nature Reserve,northeast China[J]. Biodivers Sci, 2012, 20(4):470-481.DOI: 10.3724/SP.J.1003.2012.12233. | |
[28] | LIU Z L, CHEN J M, JIN G Z, et al. Estimating seasonal variations of leaf area index using litterfall collection and optical methods in four mixed evergreen-deciduous forests[J]. Agric For Meteorol, 2015, 209/210:36-48.DOI: 10.1016/j.agrformet.2015.04.025. |
[29] | RASBAND W S, IMAGE J U S. National institutes of health, bethesda[R/OL]. Maryland, USA: National Institutes of Health, 1997. https://imagej.nih.gov/ij/. |
[30] | R Core Team. R: a language and environment for statistical computing[Z]. The R Foundation for Statistical Computing, Vienna, Austria, 2017. http://www.R-project.org/. |
[31] | BASNETT S, NAGARAJU S K, RAVIKANTH G, et al. Influence of phylogeny and abiotic factors varies across early and late reproductive phenology of Himalayan Rhododendrons[J]. Ecosphere, 2019, 10(1):e02581.DOI: 10.1002/ecs2.2581. |
[32] | ALBERT L P, WU J, PROHASKA N, et al. Age-dependent leaf physiology and consequences for crown-scale carbon uptake during the dry season in an Amazon evergreen forest[J]. New Phytol, 2018, 219(3):870-884.DOI: 10.1111/nph.15056. |
[33] | HALLIK L, NIINEMETS Ü, KULL O. Photosynthetic acclimation to light in woody and herbaceous species:a comparison of leaf structure,pigment content and chlorophyll fluorescence characteristics measured in the field[J]. Plant Biol, 2012, 14(1):88-99.DOI: 10.1111/j.1438-8677.2011.00472.x. |
[34] | EVANS J R, POORTER H. Photosynthetic acclimation of plants to growth irradiance:the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain[J]. Plant Cell Environ, 2001, 24(8):755-767.DOI: 10.1046/j.1365-3040.2001.00724.x. |
[35] | LEISHMAN M R, HASLEHURST T, ARES A, et al. Leaf trait relationships of native and invasive plants:community- and global-scale comparisons[J]. New Phytol, 2007, 176(3):635-643.DOI: 10.1111/j.1469-8137.2007.02189.x. |
[36] | DONG N, PRENTICE I C, WRIGHT I J, et al. Components of leaf-trait variation along environmental gradients[J]. New Phytol, 2020, 228(1):82-94.DOI: 10.1111/nph.16558. |
[37] | 金明月, 姜峰, 金光泽, 等. 不同年龄白桦比叶面积的生长阶段变异及冠层差异[J]. 林业科学, 2018, 54(9):18-26. |
JIN M Y, JIANG F, JIN G Z, et al. Variations of specific leaf area in different growth periods and canopy positions of Betula platyphylla at different ages[J]. Sci Silvae Sin, 2018, 54(9):18-26.DOI: 10.11707/j.1001-7488.20180903. | |
[38] | MARENCO R A, ANTEZANA-VERA S A, NASCIMENTO H C S. Relationship between specific leaf area,leaf thickness,leaf water content and SPAD-502 readings in six Amazonian tree species[J]. Photosynthetica, 2009, 47(2):184-190.DOI: 10.1007/s11099-009-0031-6. |
[39] | 盘远方, 陈兴彬, 姜勇, 等. 桂林岩溶石山灌丛植物叶功能性状和土壤因子对坡向的响应[J]. 生态学报, 2018, 38(5):1581-1589. |
PAN Y F, CHEN X B, JIANG Y, et al. Changes in leaf functional traits and soil environmental factors in response to slope gradient in Karst hills of Guilin[J]. Acta Ecol Sin, 2018, 38(5):1581-1589.DOI: 10.5846/stxb201701210173. | |
[40] | ANDEREGG L D L, LOY X, MARKHAM I P, et al. Aridity drives coordinated trait shifts but not decreased trait variance across the geographic range of eight Australian trees[J]. New Phytol, 2021, 229(3):1375-1387.DOI: 10.1111/nph.16795. |
[41] | GRIFFITH D M, QUIGLEY K M, ANDERSON T M. Leaf thickness controls variation in leaf mass per area (LMA) among grazing-adapted grasses in Serengeti[J]. Oecologia, 2016, 181(4):1035-1040.DOI: 10.1007/s00442-016-3632-3. |
[42] | LI L, MCCORMACK M L, MA C G, et al. Leaf economics and hydraulic traits are decoupled in five species-rich tropical-subtropical forests[J]. Ecol Lett, 2015, 18(9):899-906.DOI: 10.1111/ele.12466. |
[43] | MARÉCHAUX I, SAINT-ANDRÉ L, BARTLETT M K, et al. Leaf drought tolerance cannot be inferred from classic leaf traits in a tropical rainforest[J]. J Ecol, 2020, 108(3):1030-1045.DOI: 10.1111/1365-2745.13321. |
[44] | WILSON P J, THOMPSON K, HODGSON J G. Specific leaf area and leaf dry matter content as alternative predictors of plant strategies[J]. New Phytol, 1999, 143(1):155-162.DOI: 10.1046/j.1469-8137.1999.00427.x. |
[45] | QI J H, FAN Z X, FU P L, et al. Differential determinants of growth rates in subtropical evergreen and deciduous juvenile trees:carbon gain,hydraulics and nutrient-use efficiencies[J]. Tree Physiol, 2021, 41(1):12-23.DOI: 10.1093/treephys/tpaa131. |
[46] | 田俊霞, 魏丽萍, 何念鹏, 等. 温带针阔混交林叶片性状随树冠垂直高度的变化规律[J]. 生态学报, 2018, 38(23):8383-8391. |
TIAN J X, WEI L P, HE N P, et al. Vertical variation of leaf functional traits in temperate forest canopies in China[J]. Acta Ecol Sin, 2018, 38(23):8383-8391.DOI: 10.5846/stxb201801020006. | |
[47] | 朱弘, 朱淑霞, 李涌福, 等. 尾叶樱桃天然种群叶表型性状变异研究[J]. 植物生态学报, 2018, 42(12):1168-1178. |
ZHU H, ZHU S X, LI Y F, et al. Leaf phenotypic variation in natural populations of Cerasus dielsiana[J]. Chin J Plant Ecol, 2018, 42(12):1168-1178.DOI: 10.17521/cjpe.2018.0196. | |
[48] | MARTINEZ K A, FRIDLEY J D. Acclimation of leaf traits in seasonal light environments:are non-native species more plastic?[J]. J Ecol, 2018, 106(5):2019-2030.DOI: 10.1111/1365-2745.12952. |
[49] | PÉREZ-HARGUINDEGUY N, DÍAZ S, GARNIER E, et al. New handbook for standardised measurement of plant functional traits worldwide[J]. Aust J Bot, 2013, 61(3):167.DOI: 10.1071/bt12225. |
[50] | CUBINO J P, BIURRUN I, BONARI G, et al. The leaf economic and plant size spectra of European forest understory vegetation[J]. Ecography, 2021, 44(9):1311-1324.DOI: 10.1111/ecog.05598. |
[51] | SAVAGE J A. It’s all about timing—Or is it?Exploring the potential connection between phloem physiology and whole plant phenology[J]. Am J Bot, 2020, 107(6):848-851.DOI: 10.1002/ajb2.1480. |
[52] | DAYRELL R L C, ARRUDA A J, PIERCE S, et al. Ontogenetic shifts in plant ecological strategies[J]. Funct Ecol, 2018, 32(12):2730-2741.DOI: 10.1111/1365-2435.13221. |
[53] | BLOOMFIELD K J, CERNUSAK L A, EAMUS D, et al. A continental-scale assessment of variability in leaf traits:within species,across sites and between seasons[J]. Funct Ecol, 2018, 32(6):1492-1506.DOI: 10.1111/1365-2435.13097. |
[1] | 田梦阳, 朱树林, 窦全琴, 季艳红. 薄壳山核桃-茶间作对‘安吉白茶’速生期光合特性的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 86-96. |
[2] | 魏静, 谭星, 王昌盛, 闫瑞, 李林珂, 宁月, 刘芸. 引种美国红枫在两种紫色土区的生长和光合特性比较[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 97-105. |
[3] | 贾瑞瑞, 祝艳艳, 杨秀莲, 付钰, 岳远征, 王良桂. 不同砧木对楸树嫁接苗生长及光合特性的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 97-106. |
[4] | 崔祺, 吴昀, 李东泽, 吴凡, 韩蕊莲, 黄均华, 胡绍庆. 彩叶桂叶片发育过程中叶色表型与色素成分变化[J]. 南京林业大学学报(自然科学版), 2023, 47(2): 79-86. |
[5] | 田梦阳, 窦全琴, 谢寅峰, 汤文华, 季艳红. 4个薄壳山核桃品种的光合特性研究[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 67-74. |
[6] | 黄小辉, 吴焦焦, 王玉书, 冯大兰, 孙向阳. 不同供氮水平的核桃幼苗生长及叶绿素荧光特性[J]. 南京林业大学学报(自然科学版), 2022, 46(2): 119-126. |
[7] | 李佳欣, 牟长城, 田博宇, 叶林. 林隙大小和隙内位置对小兴安岭蒙古栎林内红松光合能力的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(2): 159-168. |
[8] | 季艳红, 潘平平, 窦全琴, 谢寅峰. 不同泥炭替代基质对薄壳山核桃幼苗生长及叶绿素荧光特性的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(1): 145-155. |
[9] | 张濛, 续高山, 滕志远, 刘关君, 张秀丽. 模拟酸雨对小黑杨幼苗生长和光合特性的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(6): 57-64. |
[10] | 袁婷婷, 路远峰, 谢寅峰, 马迎莉, 吴桐, 倪震. 硼钼铜微肥配施对太子参光合特性的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 130-136. |
[11] | 圣倩倩, 戴安琪, 宋敏, 唐睿, 祝遵凌. NO2胁迫下两种鹅耳枥的光合生理特性变化[J]. 南京林业大学学报(自然科学版), 2021, 45(2): 10-16. |
[12] | 吴红, 燕丽萍, 李成忠, 夏群, 周霞, 赵宝元. 槭树属常见树种翅果性状多样性与风传播特征分析[J]. 南京林业大学学报(自然科学版), 2021, 45(2): 103-110. |
[13] | 杜晋城, 李欣欣, 邓小兵, 慕长龙. 9个油橄榄品种叶片功能性状特征比较[J]. 南京林业大学学报(自然科学版), 2021, 45(2): 159-164. |
[14] | 仲磊, 张焕朝, 范俊俊, 张丹丹, 江皓, 张往祥. 夏季淹水胁迫对北美枫香苗木叶色及光合荧光特性的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(2): 69-76. |
[15] | 陈秀波, 段文标, 陈立新, 朱德全, 赵晨晨, 刘东旭. 小兴安岭3种原始红松混交林土壤nirK型反硝化微生物群落特征[J]. 南京林业大学学报(自然科学版), 2021, 45(2): 77-86. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||