[1] |
窦宏双, 梁晓, 陈青, 等. 二斑叶螨为害前后抗、感木薯转录组分析及水杨酸、茉莉酸途径差异表达基因验证[J]. 热带作物学报, 2021, 42(11): 3146-3155.
|
|
DOU H S, LIANG X, CHEN Q, et al. Transcriptome analysis of resistant and susceptible cassava infested by Tetranychus urticae and verification of differentially expressed genes in salicylic acid and jasmonic acid pathways[J]. Chin J Trop Crops, 2021, 42(11):3146-3155. DOI:10.3969/j.issn.1000-2561.2021.11.013.
|
[2] |
黄双杰, 曹梦珍, 陈凌芝, 等. 氮素胁迫条件下茶树根系发育及生长素的响应[J]. 江苏农业学报, 2023, 39(3):814-821.
|
|
HUANG S J, CAO M Z, CHEN L Z, et al. Auxin response and tea plant roots formation regulated by nitrogen stress[J]. Jiangsu J Agri Sci, 2023, 39(3):814-821.DOI: 10.3969/j.issn.1000-4440.2023.03.023.
|
[3] |
BHARATH P, GAHIR S, RAGHAVENDRA A S. Abscisic acid-induced stomatal closure: an important component of plant defense against abiotic and biotic stress[J]. Front Plant Sci, 2021, 12:615114. DOI:10.3389/fpls.2021.615114.
|
[4] |
OU X B, LI T Q, ZHAO Y, et al. Calcium-dependent ABA signaling functions in stomatal immunity by regulating rapid SA responses in guard cells[J]. J Plant Physiol, 2022, 268:153585.DOI:10.1016/j.jplph.2021.153585.
|
[5] |
赵利, 钞建宾, 郭捷, 等. 基于代谢组学技术的植物抗病相关代谢物研究进展[J]. 西北植物学报, 2021, 41(6):1071-1078.
|
|
ZHAO L, CHAO J B, GUO J, et al. Study on plant resistance-related metabolites against pathogenic fungi based on metabolomics[J]. Acta Bot Boreali Occidentalia Sin, 2021, 41(6):1071-1078. DOI:10.7606/j.issn.1000-4025.2021.06.1071.
|
[6] |
RIVAS-UBACH A, SARDANS J, HÓDAR J A, et al. Similar local,but different systemic, metabolomic responses of closely related pine subspecies to folivory by caterpillars of the processionary moth[J]. Plant Biol, 2016, 18(3):484-494. DOI:10.1111/plb.12422.
|
[7] |
张佳松. 甘蔗响应黏虫取食的代谢组学分析[D]. 福州: 福建农林大学, 2020.
|
|
ZHANG J S. The metabolomics analysis of sugarcane in response of oriential armworm Mythimna separate feeding[D]. Fuzhou: Fujian Agriculture and Forestry University, 2020.
|
[8] |
张强, 周鹏, 刘昌来, 等. NaCl处理下全缘冬青和红果冬青根系的转录组活性比较[J]. 南京林业大学学报(自然科学版), 2022, 46(3): 99-108.
|
|
ZHANG Q, ZHOU P, LIU C L, et al. Comparison of transcriptomic activity of Ilex integra and I. purpurea roots with NaCl treatments[J]. J Nanjing For Univ (Nat Sci Ed), 2022, 46(3): 99-108. DOI: 10.12302/j.issn.1000-2006.202109054.
|
[9] |
张斌, 高宝嘉, 刘洋. 剪叶和取食刺激对油松体内几种防御酶的活性及其动态的影响[J]. 生态科学, 2017, 36(1):118-122.
|
|
ZHANG B, GAO B J, LIU Y. The effects of leaf-cutting and feeding stimulation on the activities and dynamic of defense enzymes in Chinese pine[J]. Ecol Sci, 2017, 36(1):118-122. DOI:10.14108/j.cnki.1008-8873.2017.01.016.
|
[10] |
石媛媛, 冯金周, 于连海, 等. 昆虫取食和剪叶刺激对油松针叶内部分防御物质的诱导效应[J]. 河北农业大学学报, 2017, 40(1):81-86.
|
|
SHI Y Y, FENG J Z, YU L H, et al. The inducing effect of insect feeding and leaf cutting on some defensive substance in Chinese pine(Pinus tabulaeformis)needle[J]. J Agric Univ Hebei, 2017, 40(1):81-86. DOI:10.13320/j.cnki.jauh.2017.0015.
|
[11] |
王银翠, 周国娜, 张斌, 等. 油松毛虫取食和剪叶刺激胁迫下油松的蛋白质表达差异分析[J]. 林业科学, 2016, 52(8):68-75.
|
|
WANG Y C, ZHOU G N, ZHANG B, et al. Difference in protein expression of Pinus tabulaeformis induced by Dendrolimus tabulaeformis feeding and leaf-cutting stimulation[J]. Sci Silvae Sin, 2016, 52(8):68-75. DOI: 10.11707/j.1001-7488.20160809.
|
[12] |
秦世杰, 祁金玉, 刘仁军, 等. 自然状态下油松感染松材线虫后的生理响应[J]. 沈阳农业大学学报, 2021, 52(5):625-632.
|
|
QIN S J, QI J Y, LIU R J, et al. Physiological response of Pinus tabulaeformis infected with Bursaphelenchus xylophilus in natural state[J]. J Shenyang Agric Univ, 2021, 52(5):625-632. DOI: 10.3969/j.issn.1000-1700.2021.05.014.
|
[13] |
NIU S H, LI J, BO W H, et al. The Chinese pine genome and methylome unveil key features of conifer evolution[J]. Cell, 2022, 185(1):204-217e14. DOI:10.1016/j.cell.2021.12.006.
|
[14] |
MA T L, LI W J, HONG Y S, et al. TMT based proteomic profiling of Sophora alopecuroides leaves reveal flavonoid biosynthesis processes in response to salt stress[J]. J Proteom, 2022, 253:104457. DOI:10.1016/j.jprot.2021.104457.
|
[15] |
AHAMMED G J, YANG Y X. Anthocyanin-mediated arsenic tolerance in plants[J]. Environ Pollut, 2022, 292:118475. DOI:10.1016/j.envpol.2021.118475.
|
[16] |
LIU S H, FANG S, LIU C L, et al. Transcriptomics integrated with metabolomics reveal the effects of ultraviolet-B radiation on flavonoid biosynthesis in Antarctic moss[J]. Front Plant Sci, 2021, 12:788377. DOI:10.3389/fpls.2021.788377.
|
[17] |
徐展宏, 朱莹, 金慧颖, 等. 不同叶色青钱柳叶片色素、多酚含量及光合特性的差异[J]. 南京林业大学学报(自然科学版), 2022, 46(2):103-110.
|
|
XU Z H, ZHU Y, JIN H Y, et al. Variations in the contents of leaf pigments and polyphenols and photosynthesis traits in Cyclocarya paliurus with different leaf colors[J]. J Nanjing For Univ (Nat Sci Ed), 2022, 46(2):103-110. DOI:10.12302/j.issn.1000-2006.202105048.
|
[18] |
SHI J W, YAN X, SUN T T, et al. Homeostatic regulation of flavonoid and lignin biosynthesis in phenylpropanoid pathway of transgenic tobacco[J]. Gene, 2022, 809:146017. DOI:10.1016/j.gene.2021.146017.
|
[19] |
LIU W X, FENG Y, YU S H, et al. The flavonoid biosynthesis network in plants[J]. Int J Mol Sci, 2021, 22(23):12824. DOI:10.3390/ijms222312824.
|
[20] |
CHEN Z, GUO Z P, NIU J P, et al. Phytotoxic effect and molecular mechanism induced by graphene towards alfalfa (Medicago sativa L.) by integrating transcriptomic and metabolomics analysis[J]. Chemosphere, 2022, 290:133368. DOI:10.1016/j.chemosphere.2021.133368.
|
[21] |
王伟伟. 茶树对茶尺蠖的抗性评价及其抗性机制研究[D]. 武汉: 华中农业大学, 2018.
|
|
WANG W W. Resistance evaluation and mechanism of Camellia sinensis response to Ectropis obliqua[D]. Wuhan: Huazhong Agricultural University, 2018.
|
[22] |
SOHN S I, PANDIAN S, RAKKAMMAL K, et al. Jasmonates in plant growth and development and elicitation of secondary metabolites: an updated overview[J]. Front Plant Sci, 2022, 13:942789. DOI:10.3389/fpls.2022.942789.
|
[23] |
WASTERNACK C, STRNAD M. Jasmonates are signals in the biosynthesis of secondary metabolites—pathways, transcription factors and applied aspects—a brief review[J]. New Biotechnol, 2019, 48:1-11. DOI:10.1016/j.nbt.2017.09.007.
|
[24] |
李永华, 肖能文, 刘勇波. 植物防御中茉莉酸信号通路抑制与终止的作用机制[J]. 植物保护学报, 2021, 48(3):563-569.
|
|
LI Y H, XIAO N W, LIU Y B. Mechanisms of repression and termination of jasmonate signaling in plant defense[J]. J Plant Prot, 2021, 48(3):563-569. DOI:10.13802/j.cnki.zwbhxb.2021.2020221.
|
[25] |
邓苗苗, 郭晓黎. 植物响应寄生线虫侵染机制的研究进展[J]. 生物技术通报, 2021, 37(7):25-34.
|
|
DENG M M, GUO X L. Research progress on plants responses to parasitic nematodes infection[J]. Biotechnol Bull, 2021, 37(7):25-34. DOI:10.13560/j.cnki.biotech.bull.1985.2021-0669.
|
[26] |
叶德友, 漆永红, 李敏权. 植物与线虫互作的信号传导及调控机制研究进展[J]. 草业学报, 2016, 25(10):191-201.
|
|
YE D Y, QI Y H, LI M Q. Research progress on signal transduction and regulation mechanisms in plant-nematode interactions[J]. Acta Prataculturae Sin, 2016, 25(10):191-201. DOI:10.11686/cyxb2015574.
|
[27] |
张瑾, 邢玉娴, 韩涛, 等. 茶树诱导抗虫性的研究进展[J]. 昆虫学报, 2022, 65(3):399-408.
|
|
ZHANG J, XING Y X, HAN T, et al. Research progress of induced defense against insect pests in tea plant (Camellia sinensis)[J]. Acta Entomol Sin, 2022, 65(3):399-408. DOI:10.16380/j.kcxb.2022.03.014.
|
[28] |
LI R X, SU X Q, ZHOU R, et al. Molecular mechanism of mulberry response to drought stress revealed by complementary transcriptomic and iTRAQ analyses[J]. BMC Plant Biol, 2022, 22(1):36. DOI:10.1186/s12870-021-03410-x.
|
[29] |
HU W, ZHANG J P, YAN K, et al. Beneficial effects of abscisic acid and melatonin in overcoming drought stress in cotton (Gossypium hirsutum L.)[J]. Physiol Plant, 2021, 173(4):2041-2054. DOI:10.1111/ppl.13550.
|
[30] |
丁旭, 黄茜, 邓沁宇, 等. 脱落酸在植物抗虫性中的作用研究进展[J]. 环境昆虫学报, 2019, 41(4):808-813.
|
|
DING X, HUANG X, DENG Q Y, et al. Research progress of abscisic acid in plant resistance to pest[J]. J Environ Entomol, 2019, 41(4):808-813. DOI:10.3969/j.issn.1674-0858.
|
[31] |
张吉玲, 李明阳, 李勇, 等. 机械损伤处理杉木无性系萌蘖及内源激素含量差异[J]. 南京林业大学学报(自然科学版), 2021, 45(2): 153-158.
|
|
ZHANG J L, LI M Y, LI Y, et al. Effects of mechanical damage treatment on the tillering ability and endogenous hormone content of Chinese fir clones[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(2): 153-158. DOI: 10.12302/j.issn.1000-2006.202006054.
|
[32] |
SMYTHERS A L, BHATNAGAR N, HA C, et al. Abscisic acid-controlled redox proteome of Arabidopsis and its regulation by heterotrimeric Gβ proteins[J]. New Phytol, 2022, 236(2):447-463.DOI: 10.1111/nph.18348.
|
[33] |
岳喜良, 秦健, 洑香香, 等. 氮素水平对青钱柳叶片主要次生代谢物含量和抗氧化能力的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(2): 35-42.
|
|
YUE X L, QIN J, FU X X, et al. Effects of nitrogen fertilization on secondary metabolite accumulation and antioxidant capacity of Cycolcurya paliurus (Batal.) Iljinskaja leaves[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(2): 35-42. DOI: 10.3969/j.issn.1000-2006.201904048.
|