[1] |
渠畅, 边秀艳, 姜静, 等. 裂叶桦和欧洲白桦叶片形态特征及相关基因表达特性比较[J]. 北京林业大学学报, 2017, 39(8):9-16.
|
|
QU C, BIAN X Y, JIANG J, et al. Leaf morphological characteristics and related gene expression characteristic analysis in Betula pendula ‘Dalecarlica’ and Betula pendula[J]. J Beijing For Univ, 2017, 39(8):9-16.DOI: 10.13332/j.1000-1522.20160200.
|
[2] |
田世龙, 马庆, 王阳, 等. 紫叶桦与裂叶桦杂交子代的种子活力及叶片性状分离[J]. 林业科学研究, 2019, 32(3):40-48.
|
|
TIAN S L, MA Q, WANG Y, et al. Segregation of seed vigor and leaf traits in hybrid progenies of Betula pendula ‘Purple rain’ and Betula pendula ‘Dplecprlicp’[J]. For Res, 2019, 32(3):40-48.DOI: 10.13275/j.cnki.lykxyj.2019.03.006.
|
[3] |
RUNIONS A, TSIANTIS M, PRUSINKIEWICZ P. A common developmental program can produce diverse leaf shapes[J]. New Phytol, 2017, 216(2):401-418.DOI: 10.1111/nph.14449.
|
[4] |
FU G F, DAI X T, SYMANZIK J, et al. Quantitative gene-gene and gene-environment mapping for leaf shape variation using tree-based models[J]. New Phytol, 2017, 213(1):455-469.DOI: 10.1111/nph.14131.
|
[5] |
姜辉, 赵军胜, 王家宝, 等. 棉花叶形种质资源研究及应用进展[J]. 棉花学报, 2015, 27(1):89-94.
|
|
JIANG H, ZHAO J S, WANG J B, et al. Review of researches and utilizations on germplasms with different leaf shapes in cotton[J]. Cotton Sci, 2015, 27(1):89-94.
|
[6] |
CHANG L J, MEI G F, HU Y, et al. LMI1-like and KNOX1 genes coordinately regulate plant leaf development in dicotyledons[J]. Plant Mol Biol, 2019, 99(4/5):449-460.DOI: 10.1007/s11103-019-00829-7.
|
[7] |
祝朋芳, 张健, 房霞, 等. 25份羽衣甘蓝材料的亲缘关系与遗传多样性分析[J]. 西北农林科技大学学报(自然科学版), 2012, 40(5):123-128,135.
|
|
ZHU P F, ZHANG J, FANG X, et al. Analyses of genetic relationship and diversity of 25 accessions in kale[J]. J Northwest A F Univ (Nat Sci Ed), 2012, 40(5):123-128,135.DOI: 10.13207/j.cnki.jnwafu.2012.05.029.
|
[8] |
祝朋芳, 冯馨, 程明明, 等. 羽衣甘蓝裂叶相关性状遗传分析[J]. 西北植物学报, 2016, 36(2):288-295.
|
|
ZHU P F, FENG X, CHENG M M, et al. Genetic analysis of feathered-leaved related traits in Brassica oleracea var. acephala[J]. Acta Bot Boreali Occidentalia Sin, 2016, 36(2):288-295.DOI: 10.7606/j.issn.1000-4025.2016.02.0288.
|
[9] |
冯馨. 羽衣甘蓝裂叶性状遗传分析与分子标记[D]. 沈阳: 沈阳农业大学, 2016.
|
|
FENG X. Genetic analysis and molecular markers of feathered leaved trait in ornamental kale[D]. Shenyang: Shenyang Agricultural University, 2016.
|
[10] |
刘静. 萝卜败蕾的细胞形态学和小白菜裂叶性状分子标记研究[D]. 杨凌: 西北农林科技大学, 2008.
|
|
LIU J. Studies on the cytomorphology of abortion floral bud in radish and molecular marker for dehiscent leaf in No-heading Chinese cabbage[D]. Yangling: Northwest A & F University, 2008.
|
[11] |
江建霞, 李延莉, 蒋美艳, 等. 白菜型油菜开花时间的全基因组关联分析[J]. 分子植物育种, 2021, 19(16):5229-5240.
|
|
JIANG J X, LI Y L, JIANG M Y, et al. Genome-wide association analysis of flowering time in Brassica campestris[J]. Mol Plant Breed, 2021, 19(16):5229-5240.DOI: 10.13271/j.mpb.019.005229.
|
[12] |
王茹梦, 刘忠松. 甘蓝型油菜开花期全基因组关联分析及开花基因标记开发[J]. 分子植物育种, 2021, 19(10):3329-3338.
|
|
WANG R M, LIU Z S. Genome-wide association analysis of flowering time and development of flowering gene markers in Brassica napus L[J]. Mol Plant Breed, 2021, 19(10):3329-3338.DOI: 10.13271/j.mpb.019.003329.
|
[13] |
瞿媛, 姚威, 刘雄伦, 等. 全基因组关联分析定位水稻芽期中胚轴长度性状QTL[J]. 分子植物育种, 2023: 21(3):858-865.
|
|
QU Y, YAO W, LIU X L, et al. Genome-wide association dissection for QTLs controlling mesocotyl length trait in rice bud stage[J]. Mol Plant Breed, 2023: 21(3):858-865.DOI:10.13271/j.mpb.021.000858.
|
[14] |
任生林, 吴才文, 经艳芬, 等. 全基因组关联分析在作物中的研究进展[J/OL]. 分子植物育种, 2021:1-18.( 2021-09-30). https://kns.cnki.net/kcms/detail/46.1068.S.20210929.1449.008.html.
|
|
REN S L, WU C W, JING Y F, et al. Research progress of genome-wide association analysis in crops[J/OL]. Mol Plant Breed, 2021:1-18.( 2021-09-30).
|
[15] |
BHATIA N, RUNIONS A, TSIANTIS M. Leaf shape diversity:from genetic modules to computational models[J]. Annu Rev Plant Biol, 2021, 72:325-356.DOI: 10.1146/annurev-arplant-080720-101613.
|
[16] |
BIAN X Y, QU C, ZHANG M M, et al. Transcriptome sequencing to reveal the genetic regulation of leaf margin variation at early stage in birch[J]. Tree Genet Genomes, 2019, 15(1):4.DOI: 10.1007/s11295-018-1312-7.
|
[17] |
DOBIN A, DAVIS C A, SCHLESINGER F, et al. STAR:ultrafast universal RNA-Seq aligner[J]. Bioinformatics, 2013, 29(1):15-21.DOI: 10.1093/bioinformatics/bts635.
|
[18] |
SALOJÄRVI J, SMOLANDER O P, NIEMINEN K, et al. Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch[J]. Nat Genet, 2017, 49(6):904-912.DOI: 10.1038/ng.3862.
|
[19] |
TARASOV A, VILELLA A J, CUPPEN E, et al. Sambamba:fast processing of NGS alignment formats[J]. Bioinformatics, 2015, 31(12):2032-2034.DOI: 10.1093/bioinformatics/btv098.
|
[20] |
BROWNING B L, TIAN X W, ZHOU Y, et al. Fast two-stage phasing of large-scale sequence data[J]. Am J Hum Genet, 2021, 108(10):1880-1890.DOI: 10.1016/j.ajhg.2021.08.005.
|
[21] |
BROWNING B L, ZHOU Y, BROWNING S R. A one-penny imputed genome from next-generation reference panels[J]. Am J Hum Genet, 2018, 103(3):338-348.DOI: 10.1016/j.ajhg.2018.07.015.
|
[22] |
CHANG C C, CHOW C C, TELLIER L C, et al. Second-generation PLINK:rising to the challenge of larger and richer datasets[J]. GigaScience, 2015, 4:7.DOI: 10.1186/s13742-015-0047-8.
|
[23] |
BRADBURY P J, ZHANG Z W, KROON D E, et al. TASSEL:software for association mapping of complex traits in diverse samples[J]. Bioinformatics, 2007, 23(19):2633-2635.DOI: 10.1093/bioinformatics/btm308.
|
[24] |
ANDERS S, PYL P T, HUBER W. HTSeq: a Python framework to work with high-throughput sequencing data[J]. Bioinformatics, 2015, 31(2):166-169.DOI: 10.1093/bioinformatics/btu638.
|
[25] |
LOVE M I, HUBER W, ANDERS S. Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2[J]. Genome Biol, 2014, 15(12):550.DOI: 10.1186/s13059-014-0550-8.
|
[26] |
倪海枝, 王引, 颜帮国, 等. 果树基因组辅助育种技术研究现状与展望[J]. 分子植物育种, 2023: 21(5):1535-1550.
|
|
NI H Z, WANG Y, YAN B G, et al. Research status and prospects of genomics-assisted breeding technology in fruit trees[J]. Mol Plant Breed, 2023: 21(5):1535-1550.DOI:10.13271/j.mpb.021.001535.
|
[27] |
LIU S Z, YEH C T, TANG H M, et al. Gene mapping via bulked segregant RNA-seq (BSR-seq)[J]. PLoS One, 2012, 7(5):e36406.DOI: 10.1371/journal.pone.0036406.
|
[28] |
XU L, XU Y, DONG A W, et al. Novel As1 and As2 defects in leaf adaxial-abaxial polarity reveal the requirement for ASYMMETRIC LEAVES1 and 2 and ERECTA functions in specifying leaf adaxial identity[J]. Development, 2003, 130(17):4097-4107.DOI: 10.1242/dev.00622.
|
[29] |
TADEGE M, LIN H, BEDAIR M, et al. STENOFOLIA regulates blade outgrowth and leaf vascular patterning in Medicago truncatula and Nicotiana sylvestris[J]. Plant Cell, 2011, 23(6):2125-2142.DOI: 10.1105/tpc.111.085340.
|
[30] |
CHEN S, WANG Y C, YU L L, et al. Genome sequence and evolution of Betula platyphylla[J]. Hortic Res, 2021, 8(1):37.DOI: 10.1038/s41438-021-00481-7.
|
[31] |
QU C, BIAN X Y, HAN R, et al. Expression of BpPIN is associated with IAA levels and the formation of lobed leaves in Betula pendula ‘Dalecartica’[J]. J For Res, 2020, 31(1):87-97.DOI: 10.1007/s11676-018-0865-5.
|
[32] |
GOVINDARAJU P, VERNA C, ZHU T B, et al. Vein patterning by tissue-specific auxin transport[J]. Development, 2020, 147(13):dev187666.DOI: 10.1242/dev.187666.
|
[33] |
LU J H, PAN C Y, LI X, et al. OBV (obscure vein),a C2H2 zinc finger transcription factor,positively regulates chloroplast development and bundle sheath extension formation in tomato (Solanum lycopersicum) leaf veins[J]. Hortic Res, 2021, 8(1):230.DOI: 10.1038/s41438-021-00659-z.
|