南京林业大学学报(自然科学版) ›› 2024, Vol. 48 ›› Issue (1): 74-80.doi: 10.12302/j.issn.1000-2006.202302027
所属专题: 森林生态系统生物多样性研究专题
• 专题报道Ⅱ:森林生态系统生物多样性研究专题(执行主编 薛建辉 方炎明) • 上一篇 下一篇
收稿日期:
2023-02-15
修回日期:
2023-07-24
出版日期:
2024-01-30
发布日期:
2024-01-24
通讯作者:
毛岭峰
基金资助:
DONG Yujie(), MAO Lingfeng(), ZHANG Min, LU Xudong, WU Xiuping
Received:
2023-02-15
Revised:
2023-07-24
Online:
2024-01-30
Published:
2024-01-24
Contact:
MAO Lingfeng
摘要:
【目的】以华东地区亚热带典型常绿阔叶林中的栲类(Castanopsis spp.)类林和木荷(Schima superba)林两种林分类型为研究对象,研究环境因子对林分乔木层地上生物量的影响。【方法】基于各植物种的异速生长方程计算群落的地上生物量,利用相关性检验(Pearson)分析不同类型常绿阔叶林地上生物量与环境因子的关系,通过偏最小二乘法结构方程模型(PLS-SEM)构建环境因素与地上生物量之间的作用机制。【结果】①华东地区亚热带典型常绿阔叶林地上生物量随林龄的增长表现出极显著的增加趋势。②栲类天然林和木荷天然林地上生物量在研究区范围内与土壤pH呈极显著正相关,气温与太阳辐射总强度因子对木荷天然林地上生物量的变化有显著影响。③环境因素与栲类天然林地上生物量构建的结构方程模型中,气候因素对其地上生物量的直接作用系数要显著高于土壤因素。【结论】太阳辐射总强度、土壤pH、土壤容重因子对华东地区亚热带典型常绿阔叶林地上生物量的变化有显著影响。其中,栲类天然林地上生物量与土壤pH呈极显著正相关。木荷天然林地上生物量与气温因子呈显著负相关,与太阳辐射总强度因子呈极显著负相关,与土壤pH因子呈极显著正相关。
中图分类号:
董玉洁,毛岭峰,张敏,等. 华东地区亚热带典型常绿阔叶林地上生物量与环境因子的关系[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 74-80.
DONG Yujie, MAO Lingfeng, ZHANG Min, LU Xudong, WU Xiuping. Relationship between aboveground biomass and environmental factors of subtropical typical evergreen broad-leaved forest in east China[J].Journal of Nanjing Forestry University (Natural Science Edition), 2024, 48(1): 74-80.DOI: 10.12302/j.issn.1000-2006.202302027.
表1
样方布设与概况"
群落类型 community type | 样方个数 number of plots | 海拔范围/m altitude range | 经纬度范围 latitude and longitude range | 优势种 dominant species |
---|---|---|---|---|
栲类林Castanopsis spp. forest | 40 | 220~1 154 | 116.93°~120.59°E, 24.51°~30.34°N | 栲(C. fargesii)、甜槠(C. eyrei)、青冈(Q. glauca)、柯(L. glaber)、硬壳柯(L. hancei)、米槠(C. carlesii)、毛锥(C. fordii) |
木荷林Schima superba forest | 20 | 60~1 050 | 117.03°~119.80°E, 25.09°~30.25°N | 木荷(S. superba) |
表3
不同类型常绿阔叶林地上生物量与环境因子的相关性系数"
群落类型 community type | 气温 air temperature | 降水量 precipitation | 太阳辐射总强度 total solar radiation intensity | 土壤容重 soil bulk | 土壤浅层有机碳 shallow soil organic carbon | pH |
---|---|---|---|---|---|---|
栲类林 Castanopsif forest | -0.07 | 0.10 | -0.23 | 0.26 | -0.27 | 0.62** |
木荷林 S. superba forest | -0.53* | 0.32 | -0.60** | 0.43 | 0.40 | 0.62** |
典型常绿阔叶林 typical evergreen broad-leaved forest | -0.23 | 0.16 | -0.32* | 0.33** | -0.10 | 0.63** |
表4
结构方程模型路径解释"
路径 path | 假设的机制 hypothetical mechanism |
---|---|
气候climate →地上生物量aboveground biomass | 生物量的分布模式受到气候的强烈影响[ |
土壤soil →地上生物量aboveground biomass | 在同一个生态系统的环境条件下,位于营养丰富的土层会储存较高的生物量[ |
地理地形geography and topography→ 地上生物量aboveground biomass | 在中国东西样带上植物群落地上生物量(AGB)随着经度的增加而增加,表现出明显的经度地带性特征[ |
地理地形geography and topography→气候climate | 地理位置和立地环境条件可以影响森林生长的微气候环境[ |
地理地形geography and topography→土壤soil | 土壤性质因地理位置而异[ |
气候climate →土壤soil | 不同气候影响下进化出不同的土壤特性[ |
[22] | HAIR J F, RISHER J J, SARSTEDT M, et al. When to use and how to report the results of PLS-SEM[J]. Eur Bus Rev, 2019, 31(1): 2-24. DOI: 10.1108/ebr-11-2018-0203. |
[23] | HUI D F, JACKSON R B. Geographical and interannual variability in biomass partitioning in grassland ecosystems: a synthesis of field data[J]. New Phytol, 2006, 169(1): 85-93. DOI: 10.1111/j.1469-8137.2005.01569.x. |
[24] | CALEÑO-RUIZ B L, GARZÓN F, LÓPEZ-CAMACHO L, et al. Soil resources and functional trait trade-offs determine species biomass stocks and productivity in a tropical dry forest[J]. Front Vet Sci, 2023, 6: 1028359.DOI: 10.3389/ffgc.2023.1028359. |
[25] | 王晓濛, 侯继华, 何念鹏. 中国植物群落生产力由东向西分布格局及其驱动因素[J]. 生态学报, 2023, 43(6):2488-2500. |
WANG X M, HOU J H, HE N P, et al. Distribution pattern and driving factors of plant community productivity from east to west in China[J]. Acta Ecol Sin, 2023, 43(6): 2488-2500. DOI: 10.5846/stxb202203100578. | |
[26] | GONMADJE C, PICARD N, GOURLET-FLEURY S, et al. Altitudinal filtering of large-tree species explains aboveground biomass variation in an Atlantic Central African rain forest[J]. J Trop Ecol, 2017, 33(2): 143-154. DOI: 10.1017/s0266467416000602. |
[27] | 孙丽娜. 山西省森林生物量碳密度空间格局和影响因素研究[D]. 太原: 山西大学, 2020. |
SUN L N. Spatial pattern and influencing factors of forest biomass carbon density in Shanxi Province[D]. Taiyuan: Shanxi University, 2020. DOI: 10.27284/d.cnki.gsxiu.2020.002024. | |
[28] | PIEDALLU C, PEDERSOLI E, CHASTE E, et al. Optimal resolution of soil properties maps varies according to their geographical extent and location[J]. Geoderma, 2022, 412(15): 115723. DOI: 10.1016/j.geoderma.2022.115723. |
[29] | MALHI Y, WOOD D, BAKER T R, et al. The regional variation of aboveground live biomass in old-growth Amazonian forests[J]. Glob Change Biol, 2006, 12(7): 1107-1138. DOI: 10.1111/j.1365-2486.2006.01120.x. |
[30] | KITAYAMA K, AIBA S I. Ecosystem structure and productivity of tropical rain forests along altitudinal gradients with contrasting soil phosphorus pools on Mount Kinabalu, Borneo[J]. J Ecol, 2002, 90(1): 37-51. DOI: 10.1046/j.0022-0477.2001.00634.x. |
[31] | MOSER G, HERTEL D, LEUSCHNER C. Altitudinal change in LAI and stand leaf biomass in tropical montane forests: a transect study in Ecuador and a pan-tropical meta-analysis[J]. Ecosystems, 2007, 10: 924-935. DOI: 10.1007/s10021-007-9063-6. |
[32] | 钱春花, 李明阳, 郑超. 苏南丘陵山区森林生物量时空变化驱动因素分析[J]. 江苏农业学报, 2021, 37(2):382-388. |
QIAN C H, LI M Y, ZHENG C. Analysis on driving factors of spatiotemporal changes of forest biomass in hilly areas of southern Jiangsu[J]. Jiangsu J Agr Sci, 2021, 37(2):382-388.DOI:10.3969/j.issn.1000-4440.2021.02.014. | |
[33] | PENG L, XU X J, LIAO X F, et al. Ampelocalamus luodianensis (Poaceae), a plant endemic to Karst, adapts to resource heterogeneity in differing microhabitats by adjusting its biomass allocation[J]. Glob Ecol Conserv, 2023, 41: e02374. DOI: 10.1016/j.gecco.2023.e02374. |
[34] | FIALA K, TUMA L, HOLUB P. Effect of nitrogen addition and drought on aboveground biomass of expanding tall grasses Calamagrostis epigejos and Arrhenatherum elatius[J]. Biologia, 2011, 66: 275-281. DOI: 10.2478/s11756-011-0001-x. |
[35] | GATTI R C, CASTALDI S, LINDSELL J A, et al. The impact of selective logging and clearcutting on forest structure, tree diversity and aboveground biomass of African tropical forests[J]. Ecol Res, 2014, 30(1): 119-132. DOI: 10.1007/s11284-014-1217-3. |
[36] | IMANI G, BOYEMBA F, LEWIS S, et al. Height-diameter allometry and aboveground biomass in tropical montane forests: insights from the Albertine Rift in Africa[J]. Plos One, 2017. 12(6): e0179653. DOI: 10.1371/journal.pone.0179653. |
[37] | WANG C T, SUN Y, CHEN H Y H, et al. Meta-analysis shows non-uniform responses of above-and belowground productivity to drought[J]. Sci Total Environ, 2021, 782: 146901. DOI: 10.1016/j.scitotenv.2021.146901. |
[38] | 文国卫, 黄秋良, 吕增伟, 等. 气候变化情境下木荷潜在地理分布及生态适宜性分析[J]. 生态学报, 2023, 43(16): 1-10. |
[1] | 芦伟, 余建平, 任海保, 等. 古田山中亚热带常绿阔叶林群落物种多样性的空间变异特征[J]. 生物多样性, 2018, 26(9):1023-1028. |
LU W, YU J P, REN H B, et al. Spatial variation characteristics of species diversity of subtropical evergreen broad-leaved forest community in Gutian Mountain[J]. Biodivers Sci, 2018, 26(9): 1023-1028. DOI: 10.17520/biods.2018138. | |
[2] | DIXON R K, SOLOMON A M, BROWN S, et al. Carbon pools and flux of global forest ecosystems[J]. Science, 1994, 263(5144): 185-190. DOI: 10.1126/science.263.5144.185. |
[3] | HOUGHTON R A. Aboveground forest biomass and the global carbon balance[J]. Glob Change Biol, 2005, 11(6): 945-958. DOI: 10.1111/j.1365-2486.2005.00955.x. |
[4] | GONZALEZ-AKRE E, PIPONIOT C, LEPORE M, et al. Allodb: an R package for biomass estimation at globally distributed extratropical forest plots[J]. Methods Ecol Evol, 2021, 13(2): 330-338. DOI: 10.1111/2041-210X.13756. |
[5] | SLIK J W F, PAOLI G, MCGUIRE K, et al. Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics[J]. Glob Ecol Biogeogr, 2013, 22(12): 1261-1271. DOI: 10.1111/geb.12092. |
[6] | LIU Y C, YU G R, WANG Q F, et al. How temperature, precipitation and stand age control the biomass carbon density of global mature forests[J]. Glob Ecol Biogeogr, 2014, 23: 323-333. DOI: 10.1111/geb.12113. |
[7] | LARJAVAARA M, MULLER-LANDAU H C. Temperature explains global variation in biomass among humid old-growth forests: temperature and old-growth forest biomass[J]. Glob Ecol Biogeogr, 2012, 21(10): 998-1006. DOI: 10.1111/j.1466-8238.2011.00740.x. |
[8] | BARALOTO C, RABAUD C, MOLTO Q, et al. Disentangling stand and environmental correlates of aboveground biomass in Amazonian forests[J]. Glob Change Biol, 2011, 17(8): 2677-2688. DOI: 10.1111/j.1365-2486.2011.02432.x. |
[9] | 杨远盛, 张晓霞, 于海艳, 等. 中国森林生物量的空间分布及其影响因素[J]. 西南林业大学学报, 2015, 35(6):45-52. |
YANG Y S, ZHANG X X, YU H Y, et al. Spatial distribution of forest biomass and its influencing factors in China[J]. J Southwest For Univ, 2015, 35(6): 45-52. DOI: 10.11929/j.issn.2095-1914.2015.06.008. | |
[10] | NIE X Q, WANG D, ZHOU G Y, et al. Storage and controlling factors of soil organic carbon in alpine wetlands and meadow across the Tibetan Plateau[J]. Eur J Soil Sci, 2023, e13383. DOI: 10.1111/ejss.13383. |
[11] | MALEKI S, KHORMALI F, BODAGHABADI M B, et al. Role of geomorphic surface on the aboveground biomass and soil organic carbon storage in a semi-arid region of Iranian Loess Plateau[J]. Quat Int, 2020, 552(30): 111-121. DOI: 10.1016/j.quaint.2018.11.001. |
[12] | CABRERA M, DUIVENVOORDEN J F. Drivers of aboveground biomass of high mountain vegetation in the Andes[J]. Acta Oecol-Int J Ecol, 2019, 102: 103504. DOI: 10.1016/j.actao.2019.103504. |
[13] | KRAMER M G, CHADWICK O A. Controls on carbon storage and weathering in volcanic soils across a high-elevation climate gradient on Mauna Kea, Hawaii[J]. Ecology, 2016, 97(9): 2384-2395. DOI: 10.1002/ecy.1467. |
[14] | WANG X H, KENT M, FANG X F. Evergreen broad-leaved forest in eastern China: its ecology and conservation and the importance of resprouting in forest restoration[J]. For Ecol Manage, 2007, 245: 76-87. DOI: 10.1016/j.foreco.2007.03.043. |
[15] | 孔祥海. 福建梅花山国家级自然保护区常绿阔叶林生态学研究[D]. 厦门: 厦门大学, 2008. |
KONG X H. Ecological study on evergreen broad-leaved forest in Meihuashan national nature reserve in Fujian Province[D]. Xiamen: Xiamen University, 2008. | |
[16] | 樊海东, 陈海燕, 吴雁南, 等. 金华北山南坡主要植被类型的群落特征[J]. 植物生态学报, 2019, 43(10):921-928. |
FAN H D, CHEN H Y, WU Y N, et al. The community characteristics of main vegetation types on the south slope of north mountain in Jinhua[J]. J Plant Ecol, 2019, 43(10): 921-928. DOI: 10.17521/cjpe.2019.0114. | |
[17] | 温远光, 周晓果, 朱宏光, 等. 桉树生态营林的理论探索与实践[J]. 广西科学, 2019, 26(2):159-175+252. |
WEN Y G, ZHOU X G, ZHU H G, et al. Theoretical exploration and practice of Eucalyptus ecological forest management[J]. Guangxi Sci, 2019, 26(2): 159-175+252. DOI: 10.13656/j.cnki.gxkx.20190419.012. | |
[18] | 赖江山, 张谧, 谢宗强. 三峡库区常绿阔叶林优势种群的结构和格局动态[J]. 生态学报, 2006(4):1073-1079. |
LAI J S, ZHANG M, XIE Z Q. The structure and pattern dynamics of dominant populations in evergreen broad-leaved forests in the Three Gorges Reservoir Area[J]. Acta Ecol Sin, 2006 (4): 1073-1079. DOI: 10.3321/j.issn:1000-0933.2006.04.013. | |
[19] | 胡喜生, 洪伟, 吴承祯, 等. 木荷天然种群生命表分析[J]. 广西植物, 2007, 7(3):469-474. |
HU X S, HONG W, WU C Z, et al. Life table analysis of Schima superba natural population[J]. Guihaia, 2007, 7(3): 469-474. DOI: 10.3969/j.issn.1000-3142.2007.03.019. | |
[20] | 李川, 张廷军, 陈静. 近40年青藏高原地区的气候变化——NCEP和ECMWF地面气温及降水再分析和实测资料对比分析[J]. 高原气象, 2004(S1):97-103. |
LI C, ZHANG T J, CHEN J. Climate change in the Qinghai Tibet Plateau region over the past 40 years: reanalysis and comparative analysis of NCEP and ECMWF surface temperature and precipitation data[J]. Plateau Meteor, 2004 (S1): 97-103. DOI: 10.3321/j.issn:1000-0534.2004.z1.016. | |
[38] | WEN G W, HUANG Q L, LYU Z W, et al. Analysis of potential geographical distribution and ecological suitability of Schima superba under climate change[J]. Acta Ecol Sin, 2023, 43(16): 1-10. DOI: 10.5846/stxb202201130121. |
[21] | WANG B L, FRENCH H M. Climate controls and high-altitude permafrost, Qinghai-Xizang (Tibet) Plateau, China[J]. Permafrost Periglacial Process, 1994, 5(2): 87-100. DOI: 10.1002/ppp.3430050203. |
[1] | 周友锋, 谢秉楼, 李明诗. 基于随机森林协同克里金法的区域森林地上生物量制图——以粤北森林为例[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 169-178. |
[2] | 鲁旭东, 董禹然, 李垚, 毛岭峰. 中国亚热带杉木人工林不同林分发育阶段的群落构建机制[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 67-73. |
[3] | 杨云峰, 杨家琪. 基于蚊患防控的亚热带地区城市公园生态整治设计[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 211-218. |
[4] | 李建华, 夏虹露, 唐卫平, 黄晗. 亚热带典型森林类型可燃物载量分配特征[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 57-64. |
[5] | 朱锦迪, 韦新良, 杨晶晶, 张继艳. 地形因子对亚热带针阔混交林树种多样性的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(4): 153-161. |
[6] | 辜旭, 汤逸帆, 申建华, 朱咏莉. 沼液中 |
[7] | 巨一琳, 姬永杰, 黄继茂, 张王菲. 联合LiDAR和多光谱数据森林地上生物量反演研究[J]. 南京林业大学学报(自然科学版), 2022, 46(1): 58-68. |
[8] | 张国飞, 岳彩荣, 罗洪斌, 谷雷, 朱泊东. 基于极化定向角补偿的思茅松林地上生物量反演[J]. 南京林业大学学报(自然科学版), 2021, 45(6): 185-192. |
[9] | 赵颖慧, 郭新龙, 甄贞. 基于光学-ALS变量组合和非参数模型的天然次生林地上生物量估算[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 49-57. |
[10] | 赵晓雅, 关梦冉, 孙孟瑶, 王泽夫, 徐小牛. 氮磷添加对亚热带常绿阔叶林凋落物产量及其养分含量的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(6): 55-62. |
[11] | 潘磊, 孙玉军, 王轶夫, 陈丽萍, 曹元帅. 基于Sentinel⁃1和Sentinel⁃2数据的杉木林地上生物量估算[J]. 南京林业大学学报(自然科学版), 2020, 44(3): 149-156. |
[12] | 许宝坤,许晓岗,李垚,李小东,陈水飞,丁晖,蒋晓辉,苟凌晨,方炎明. 黄山常绿阔叶林甜槠群落优势种种间关联分析[J]. 南京林业大学学报(自然科学版), 2019, 43(04): 77-84. |
[13] | 周华,孟盛旺,刘琪璟. 亚热带常绿阔叶林幼树与灌木的地上生物量模型[J]. 南京林业大学学报(自然科学版), 2017, 41(06): 79-86. |
[14] | 李静,王玲红,程栋梁,徐朝斌,张中瑞,吴永宏,钟全林. 不同龄组天然常绿阔叶林与杉木人工林林下草本层生物量分配特征[J]. 南京林业大学学报(自然科学版), 2016, 40(05): 170-176. |
[15] | 薛岑,刘茂松,康昕,郑阿宝,侯嫦英,关庆伟,徐驰. 苏南丘陵山区典型次生森林群落的点格局分析[J]. 南京林业大学学报(自然科学版), 2016, 40(02): 107-112. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||