南京林业大学学报(自然科学版) ›› 2024, Vol. 48 ›› Issue (3): 219-228.doi: 10.12302/j.issn.1000-2006.202206039
李岩松1(), 杨艳蓉1,*(), 张文艺1, 张乐英1, 黄傲1, 张贻荣2
收稿日期:
2022-06-22
修回日期:
2022-11-01
出版日期:
2024-05-30
发布日期:
2024-06-14
作者简介:
李岩松(liyansonglyj1997@163.com)。
基金资助:
LI Yansong1(), YANG Yanrong1,*(), ZHANG Wenyi1, ZHANG Leying1, HUANG Ao1, ZHANG Yirong2
Received:
2022-06-22
Revised:
2022-11-01
Online:
2024-05-30
Published:
2024-06-14
摘要:
【目的】 西南地区是我国第二大天然林区,该地生态系统脆弱,森林雷击火灾频发。通过遥感、探测资料分析不同地表覆盖类型、不同海拔下垫面的雷电活动特征,探究雷电活动对森林雷击火的影响。【方法】 根据2005—2017年全球闪电定位系统(WWLLN)闪电数据、MCD12Q1土地覆盖数据、SRTM(shuttle radar topography mission)海拔数据以及相应森林雷击火个例,结合Theil-Sen趋势分析、Mann-Kendall趋势检验、相对密度差分析,对我国西南地区雷电活动随下垫面类型、海拔的变化特征及其与森林雷击火的关系进行研究。【结果】 ① 2005—2017年西南地区云地闪频次以每年8.75%的速率增加。四川和云南交界的攀枝花附近区域是最高值核心区。② 海拔500~1 000 m、稀树草原类下垫面年均云地闪频次最多。以相对密度差表征雷电活跃程度,从季节上看,春季最活跃;从昼夜变化尺度上看,昼间最活跃。表现活跃的下垫面集中在海拔0~1 000 m段,以及农用地/自然植被拼接、稀树草原类和城区为主的地表类型。③ 云地闪在不同下垫面均呈增长趋势,其增长面积占比为西南地区的93.48%。其中,海拔3 500 m以上和草地类型下垫面的增长趋势最显著,从海拔和地表类型来看,显著的面积占比均超过80%。④ 年云地闪频次越高,发生森林雷击火的概率越大。海拔0~1 000 m森林雷击火发生与云地闪活动的下垫面特点一致,海拔1 000 m以上雷击火主要受高云地闪频次影响。【结论】 西南地区雷电活动与下垫面的海拔、地表类型关系密切,且这一关系随不同时间尺度而变化。作为森林雷击火的起因,结合下垫面特征分析雷电活动,探究森林雷击火,可以为西南山地天然林保护提供科学支撑。
中图分类号:
李岩松,杨艳蓉,张文艺,等. 西南地区不同下垫面雷电活动特征与森林雷击火的关系[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 219-228.
LI Yansong, YANG Yanrong, ZHANG Wenyi, ZHANG Leying, HUANG Ao, ZHANG Yirong. Relationship between characteristics of lightning activity on different underlying surface and forest lightning fire in southwest China[J].Journal of Nanjing Forestry University (Natural Science Edition), 2024, 48(3): 219-228.DOI: 10.12302/j.issn.1000-2006.202206039.
表1
Seasonal and diurnal Dr of cloud-to-ground lightning at different altitudes in southwest China from 2005 to 2017单位:%"
海拔/m altitude section | 春 spring | 夏 summer | 秋 autumn | 昼 day | 夜 night |
---|---|---|---|---|---|
[0,200) | 38.01* | -37.97 | -45.49 | 32.44* | -35.69 |
[200,500) | 10.64* | 39.14* | -21.54 | 98.10* | -24.72 |
[500,1 000) | 43.05* | 12.99* | -1.65 | 29.18* | 8.48* |
[1 000,3 500) | -22.34 | -9.17 | 16.77* | -25.05 | 4.37* |
≥3 500 | -63.63 | -34.23 | -9.46 | -81.78 | -10.98 |
表2
Seasonal and diurnal Dr of cloud-to-ground lightning at different land cover in southwest China from 2005 to 2017 单位:%"
土地覆盖类型 land cover type | 春 spring | 夏 summer | 秋 autumn | 昼 day | 夜 night |
---|---|---|---|---|---|
森林 forest | -4.57 | -10.62 | 3.91* | -10.84 | -4.11 |
多树型稀树草原 multi-tree savanna | 8.53* | 1.33* | -6.14 | 4.83* | 0.31* |
稀树草原 savanna | 27.05* | 20.93* | 15.67* | 27.18* | 16.57* |
草地 grass | -60.42 | -36.83 | -15.97 | -77.76 | -16.90 |
农用地 agricultural land | -5.49 | 2.38* | 12.24* | -8.07 | 7.66* |
城市和建筑区 urban and built areas | 10.41* | 39.15* | -0.09 | 64.48* | -2.99 |
水体 waters | -30.11 | 21.22* | -6.05 | -28.66 | -2.55 |
农用地/自然植被拼接 agricultural land/natural vegetation mosaic | 33.03* | 31.13* | -6.73 | 85.57* | -5.67 |
表3
西南地区各地表类型云地闪变化趋势"
下垫面类型 underlying surface type | 变化面积占比/% proportion of change area | |||
---|---|---|---|---|
显著增加 significant increase | 不显著 增加 insignificant increase | 不显著 减少 insignificant reduction | ||
按海拔 分类 classification by altitude | [0, 200)m | 7.69 | 84.62 | 7.69 |
[200, 500)m | 8.38 | 65.24 | 26.38 | |
[500, 1 000)m | 35.98 | 57.13 | 6.89 | |
[1 000, 3 500)m | 44.63 | 51.72 | 3.61 | |
≥3 500 m | 85.21* | 14.64 | 0.15 | |
按土地 类型分类 classification by land type | 森林 forest | 57.21* | 37.46 | 5.28 |
多树型稀树草原 multi-tree savanna | 42.21 | 52.03 | 5.76 | |
稀树草原 savanna | 34.49 | 57.97 | 7.55 | |
草地 grass | 80.61* | 18.62 | 0.77 | |
农用地 agricultural land | 28.43 | 62.88 | 8.70 | |
城市和建筑区 urban and built areas | 33.33 | 40.40 | 26.26 | |
水体 waters | 60.00* | 30.00 | 10.00 | |
农用地/自然植被拼接 agricultural land/natural vegetation mosaic | 8.92 | 1.96 | 19.12 |
[1] | MAGNUSSON W E, LIMA L O D. Group lightning mortality of trees in a Neotropical forest[J]. J Trop Ecol, 1996, 12: 899-903. DOI: 10.1017/S0266467400010166. |
[2] | PARLATO B P, GORA E M, YANOVIAK S P. Lightning damage facilitates beetle colonization of tropical tree[J]. Ann Entomol Soc Am, 2020, 6(3): 404-410. DOI: 10.1093/aesa/saaa015. |
[3] | PRICE C, CRIND D. Possible implications of global climate change on global lightning distributionsand frequencie[J]. J Geophys Res-Atmos, 1994, 99(D5): 10823-10831. DOI: 10.1029/94JD00019. |
[4] | SCHUMACHER V, SETZER A, SABA M M F, et al. Characte-ristics of lightning-caused wildfires in central Brazilirelation to cloud-ground and dry lightning[J]. Agr Forest Meteorol, 2022, 312: 108723. DOI: 10.1016/j.agrformet.2021.108723. |
[5] | SIMON T, MAYR G J. Daily-resolved lightning climatology of the eastern alpine region at the kilometer scale[J]. Atmos Ocean Phy, 2022: 2201.07294. DOI: 10.1007/s00502-022-01032-1. |
[6] | DISSING D, VERBYLA D L. Spatial patterns of lightning strikes in interior Alaska and their relations to elevation and vegetation[J]. Can J Forest Res, 2003, 33(5): 770-782. DOI:10.1139/x02-214. |
[7] | 赵生昊, 杨磊. 基于MODIS数据的地表覆盖种类与地闪分布特征关系研究[J]. 气象科技, 2016, 44(5): 822-827. |
ZHAO S H, YANG L. Relationship between land cover and cloud-to-ground lightning distribution based on MODIS data[J]. Meteorological Science and Technology, 2016, 44(5): 822-827. DOI: 10.19517/j.1671-6345.2016.05.022. | |
[8] | 吴量, 郭媛, 向清才. 河池市闪电活动与下垫面植被类型关系分析[J]. 气象研究与应用, 2019, 40(1): 62-64. |
WU L, GUO Y, XIANG Q C. Analysis of the relationship between lightning activity and vegetation forms on underlying surface in Hechi[J]. Journal of Meteorological Research and Application, 2019, 40(1): 62-64. | |
[9] | 卢友发, 吴世安. 河南省闪电活动与复杂下垫面之间的相关性分析[J]. 信阳师范学院学报(自然科学版), 2017, 30(1): 87-91. |
LU Y F, WU S A. Analysis about the correlation between lightning activity and the complex underlying surface in Henan Province[J]. Journal of Xinyang Normal University(Natural Science), 2017, 30(1): 87-91. DOI: 10.3969/j.issn.1003-0972.2017.01.019. | |
[10] | PETROV N I, WATERS R T. Lightning to earthed structures: striking distance variation with stroke polarity, structure geometry and altitude based on a theoretical approach[J]. J Electrostat, 2021, 112(6): 103599. DOI: 10.1016/j.elstat.2021.103599. |
[11] | BOCCIPPIO D J, CUMMINS K L, CHRISTIAN H J, et al. Combined satellite and surface-based estimation of the intracloud/cloud-to-ground lightning ratio over the continental United States[J]. Mon Weather Rev, 2000, 129(1): 108-122. DOI: 10.1175/1520-0493(2001)129<0108:CSASBE>2.0.CO;2. |
[12] | 李政, 肖稳安, 李家启, 等. 区域海拔高度变化对闪电特征影响的初步分析[J]. 湖北大学学报(自然科学版), 2011, 33(2): 197-201. |
LI Z, XIAO W A, LI J Q, et al. The preliminary analysis of the influence of region’s elevation change onlightning characteristics[J]. Journal of Hubei University(Natural Science), 2011, 33(2): 197-201. | |
[13] | 王凯, 周丽雅, 鞠晓雨, 等. 2011—2019年中国长江三角洲区域闪电时空分布特征[J]. 气象与环境学报, 2021, 37(4): 100-106. |
WANG K, ZHOU L Y, JU X Y, et al. Temporal and spatial distribution characteristics of lightning in the Yangtze River Delta of China from 2011 to 2019[J]. Journal of Meteorology and Environment, 2021, 37(4): 100-106. DOI: 10.3969/j.issn.1673-503X.2021.04.014. | |
[14] | ADHIKARI P B, ADHIKARI A, TIWARI A K. Effects of lightning as a disaster in Himalayan region[J]. Bibechana, 2021, 18(2): 117-129. DOI: 10.3126/bibechana.v18i2.29168. |
[15] | RODRIGUES M, GELABERT P J, RESCO DE DIOS V, et al. High-resolution modeling of lightning ignition Likelihood in Spain[J]. Environ Sci Technol, 2022, 17(1): 40. DOI: 10.3390/environsciproc2022017040. |
[16] | 尹赛男, 王东昶, 单延龙, 等. 黑龙江省3种主要火源引发森林火灾的次数和面积时空分布特征[J]. 林业科学, 2021, 7(6): 115-124. |
YIN S N, WANG D C, SHAN Y L, et al. Spatial and temporal distribution of forest fires (frequency and area) caused by three main fire sources in Heilongjiang Province[J]. Scientia Silvae Sincae, 2021, 7(6): 115-124. DOI: 10.11707/j.1001-7488.20210613. | |
[17] | PINEDA N, RIGO T. The rainfall factor in lightning-ignited wildfires in Catalonia[J]. Agr Forest Meteorol, 2017, 239: 249-263. DOI: 10.1016/j.agrformet.2017.03.016. |
[18] | BARANOVSKIY N. Deterministic-probabilistic approach to predict lightning-caused forest fires in mounting areas[J]. Forecasting, 2021, 3(4): 695-715. DOI: 10.3390/forecast3040043. |
[19] | NADEEM K, TAYLOR S W, WOOLFORD D G, et al. Mesoscale spatiotemporal predictive models of daily human-and lightning-caused wildland fire occurrence in British Columbia[J]. Int J Wildland Fire, 2019, 29(1): 11-27. DOI: 10.1071/WF19058. |
[20] | MARINA Y B, NIKOLAY V B, ANDREY V K, et al. Assessment of the uncertainty for the spatial distribution of lightning discharge density based on the smoothed bootstrap procedure and wwlln data: a case study[J]. International Journal on Engineering Applications, 2022. DOI: 10.15866/irea.v10i2.20850. |
[21] | 何诚, 舒立福, 刘柯珍. 大兴安岭地区夏季森林火灾环境因子特征分析[J]. 西南林业大学学报(自然科学), 2021, 41(3): 87-93. |
HE C, SHU L F, LIU K Z. Analysis on environmental factors’ characteristics of summer forest fire in Daxing’an Mountains[J]. Journal of Southwest Forestry University, 2021, 41(3): 87-93. DOI: 10.11929/j.swfu.202008039. | |
[22] | 杨少斌, 曹萌, 祝鑫海, 等. 2001—2019年内蒙古大兴安岭北部原始林区森林火灾发生规律研究[J]. 灾害学, 2022, 37 (3): 122-128. |
YANG S B, CAO M, ZHU X H, et al. Research on occurrence law of forest fire in the northern primitive forest area of Greater Khingan range, Inner Mongolia from 2001 to 2019[J]. Journal of Catastrophology, 2022, 37(3): 122-128. DOI: 10.3969/j.issn.1000-811X.2022.03.020. | |
[23] | 杜野. 内蒙古北部原始林区的雷击火分布规律研究[J]. 森林防火, 2017(4): 28-31. |
DU Y. Study on distribution law of lightning fire in primitive forest area in northern Inner Mongolia[J]. Forest Fire Prevention, 2017(4): 28-31. | |
[24] | 靖娟利, 和彩霞, 王永锋, 等. 西南地区1902-2018年干旱时空演变特征分析[J]. 水土保持研究, 2022, 29(3): 220-227. |
JING J L, HE C X, WANGY F, et al. Spatiotemporal evolution characteristics of meteorological drought in southwest China from 1902 to 2018[J]. Research of Soil and Water Conservation, 2022, 29(3): 220-227. DOI: 10.13869/j.cnki.rswc.2022.03.007. | |
[25] | 田晓瑞, 舒立福, 赵凤君, 等. 气候变化对中国森林火险的影响[J]. 林业科学, 2017, 53(3): 159-169. |
TIAN X R, SHU L F, ZHAO F J, et al. Impacts of climate change on forest fire danger in China[J]. Scientia Silvae Sincae, 2017, 53(3): 159-169. DOI: 10.11707/j.1001-7488.20170716. | |
[26] | 刘晔, 李鹏, 许玥, 等. 中国西南干旱河谷植物群落的数量分类和排序分析[J]. 生物多样性, 2016, 24(4): 378-388. |
LIU Y, LI P, XU Y, et al. Quantitative classification and ordination for plant communities in dry valleys of Southwest China[J]. Biodiverdity Science, 2016, 24(4): 378-388. DOI: 10.17520/biods.2015241. | |
[27] | 杨艳蓉, 侯召朕, 张增信. 2001—2018年西南地区NDVI变化特征及影响因素[J]. 水土保持通报, 2021, 41(2): 337-344. |
YANG Y R, HOU Z Z, ZHANG Z X. NDVI Changes and driving factors in southwest China from 2001 to 2018[J]. Bulletin of Soil and Water Conservation, 2021, 41(2): 337-344. DOI: 10.13961/j.cnki.stbctb.2021.02.044. | |
[28] | 舒洋, 孙子瑜, 张恒. 世界森林雷击火研究现状和展望[J]. 世界林业研究, 2022, 35(2):34-40. |
SHU Y, SUN Z Y, ZHANG H. Research on lightning fire in forest: current status and outlook[J]. World Forestry Research, 2022, 35(2): 34-40. DOI: 10.13348/j.cnki.sjlyyj.2021.0070.y. | |
[29] | MORIS J V, CONEDERA M, NISI L, et al. Lightning-caused fires in the Alps: identifying the igniting strokes[J]. Agricultural and Forest Meteorology, 2020, 290(107990): 1-11. DOI: 10.1016/j.agrformet.2020.107990. |
[30] | 马金福, 冯志伟. 雷击地闪密度与雷暴日数的关系分析[J]. 气象科学, 2009, 29(5): 674-678. |
MA J F, FENG Z W. The analysis the relationship between density of ground lightning strokes and the number of thunderstorm days[J]. Scientia Meteorologica Sinica, 2009, 29(5): 674-678. | |
[31] | 李洪广, 周旭, 肖杨, 等. 基于SRP模型的西南喀斯特山区生态脆弱性时空变化特征[J]. 生态科学, 2021, 40(3): 238-246. |
LI H G, ZHOU X, XIAO Y, et al. Temporal and spatial changes of ecological vulnerability in southwestern Karst mountains based on SRP model[J]. Ecological Science, 2021, 40(3): 238-246. DOI: 10.14108/j.cnki.1008-8873.2021.03.028. | |
[32] | 杨宗凯, 刘平英, 胡颖, 等. 云南省雷电活动分布特征及对农村地区的影响分析[J]. 中国农业资源与区划, 2018, 39(9): 262-267. |
YANG Z K, LIU P Y, HU Y, et al. Analysis of distribution characteristic of lightning activity and its influence on rural areas in Yunnan[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2018, 39(9): 262-267. DOI: 10.7621/cjarrp.1005-9121.20180935. | |
[33] | 杨水泉, 熊晓洪. 利用LIS/OTD格点资料分析西南地区闪电活动的气候分布特征[J]. 广西气象, 2006(S3): 60-66. |
YANG S Q, XIONG X H. Climate distribution characteristics of lightning activity in southwest China were analyzed using LIS/OTD grid data[J]. Journal of Guangxi Meteorology, 2006(S3): 60-66. | |
[34] | KARANINA S Y, KARANIN A V, KOCHEEVA N A, et al. The distribution of lightning discharges across the altitude of the territory in the Altai-Sayan region[J]. Journal of Physics: Conference Series, 2020, 1604(1): 12009. |
[35] | 王学良, 张科杰, 余田野, 等. 湖北地区云地闪电频次及雷电流幅值时间分布特征[J]. 电瓷避雷器, 2017(3): 1-9. |
WANG X L, ZHANG K J, YU T Y, et al. The time distribution characteristics on frequency and peak current of cloud-to-ground lightning in Hubei Province[J]. Insulators and Surge Arresters, 2017(3): 1-9. DOI: 10.16188/j.isa.1003-8337.2017.03.001. | |
[36] | GALANAKI E, LAGOUVARDOS K, KOTRONI V, et al. Thunderstorm climatology in the Mediterranean using cloud-to-ground lightning observations[J]. Atmospheric Research, 2018, 207(15): 136-144. DOI: 10.1016/j.atmosres.2018.03.004. |
[37] | 王义耕, 刘洁, 王介君, 等. 卫星观测的西南地区闪电的时空分布[J]. 大气科学学报, 2010, 33(4): 489-495. |
WANG Y G, LIU J, WANG J J, et al. Temporal and spatial distributions of lightning activity in southwest China based on satellite observations[J]. Transactions of Atmospheric Sciences, 2010, 33(4): 489-495. DOI: 10.13878/j.cnki.dqkxxb.2010.04.010. | |
[38] | 成鹏伟, 周筠珺, 赵鹏国, 等. 北京与成都城市下垫面闪电时空分布特征对比研究[J]. 成都信息工程大学学报, 2018, 33(3): 326-334. |
CHENG P W, ZHOU Y J, ZHAO P G, et al. A comparative study on space-time distribution characteristics of lightning flashes in Beijing and Chengdu cities[J]. Journal of Chengdu University of Information Technology, 2018, 33(3): 326-334. DOI: 10.16836/j.cnki.jcuit.2018.03.016. | |
[39] | 许洪泽, 周梅. ADTD异常对闪电定位资料影响分析[J]. 气象科技进展, 2018, 8(1): 33-37. |
XU H Z, ZHOU M. An analysis of the effect of ADTD abnormality on lightning location Data[J]. Advances in Meteorological Science and Technology, 2018, 8(1): 33-37. DOI: 10.3969/j.issn.2095-1973.2018.01.005. | |
[40] | 邓雨荣, 李涵, 朱时阳, 等. 基于卫星资料的全球闪电定位系统探测效率评估[J]. 气象科学, 2015, 35(5): 599-604. |
DENG Y R, LI H, ZHU S Y, et al. Detection efficiency of the WWLLN based on OTD/LIS data[J]. Journal of the Meteorological Science, 2015, 35(5): 599-604. DOI: 10.3969/2014jms.0051. | |
[41] | KAPLAN J O, LAU K H K. The WGLC global gridded lightning climatology and time series[J]. Earth System Science Data, 2021, 13(7): 3219-3237. |
[42] | LIAO W L, LIU X P, XU X Y, et al. Projections of land use changes under the plant functional type classificationin different SSP-RCP scenarios in China[J]. Science Bulletin, 2020, 65(22): 1935-1947. DOI: 10.1016/j.scib.2020.07.014. |
[43] | ZHU Y, DENG X Q, NEWSAM S. Fine-grained land use classification at the city scale using ground-level images[J]. IEEE Transactions on Multimedia, 2018, 21(7): 1825-1838. DOI: 10.1109/TMM.2019.2891999. |
[44] | 岳超, 罗彩访, 舒立福, 等. 全球变化背景下野火研究进展[J]. 生态学报, 2020, 40(2): 385-401. |
YUE C, LUO C F, SHU L F, et al. A review on wildfire studies in the context of global change[J]. Acta Ecologica Sinica, 2020, 40(2): 385-401. DOI: 10.5846/stxb201812202762. | |
[45] | 孙龙, 窦旭, 胡同欣. 林火对森林生态系统碳氮磷生态化学计量特征影响研究进展[J]. 南京林业大学学报(自然科学版), 2021, 45(2): 1-9. |
SUN L, DOU X, HU T. Research progress on the effects of forest fire on forest ecosystem C-N-P ecological stoichiometry characteristics[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2021, 45(2): 1-9. DOI: 10.12302/j.issn.1000-2006.202003037. | |
[46] | 张宏民, 乔艺骞, 唐珑坪, 等. 模拟雷击明火点燃松针燃料的实验研究[J]. 工程热物理学报, 2022, 43(3): 840-845. |
ZHANG H M, QIAO Y Q, TANG L P, et al. Experimental study on sustainable flaming lgnition of dead pine needles by simulated lightning discharge[J]. Journal of Engineering Thermophysics, 2022, 43(3): 840-845. |
[1] | 高羽, 李静, 刘洋, 乌雅瀚, 巩家星, 辛启睿. 结构方程模型在兴安落叶松林生长中的应用[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 38-46. |
[2] | 邓小军, 唐健, 王会利, 宋贤冲, 曹继钊, 覃祚玉, 宋光桃. 猫儿山自然保护区沿海拔分布植被带土壤硝化-反硝化和呼吸作用分析[J]. 南京林业大学学报(自然科学版), 2020, 44(1): 81-88. |
[3] | 陈禹衡, 吕一维, 殷晓洁. 气候变化下西南地区12种常见针叶树种适宜分布区预测[J]. 南京林业大学学报(自然科学版), 2019, 43(6): 113-120. |
[4] | 张雨峰, 代丽, 谢寅峰, 马迎莉, 汤文华, 袁婷婷. 不同海拔金佛山方竹出笋及幼竹生长特性[J]. 南京林业大学学报(自然科学版), 2019, 43(5): 199-203. |
[5] | 孟苗婧,张金池,郭晓平,吴家森,赵有朋,叶立新,刘胜龙. 海拔变化对黄山松阔叶混交林土壤有机碳组分的影响[J]. 南京林业大学学报(自然科学版), 2018, 42(06): 106-112. |
[6] | 刘明慧,孙雪,于文杰,秦立武,冯富娟1. 长白山不同海拔原始红松林土壤活性有机碳含量的生长季动态[J]. 南京林业大学学报(自然科学版), 2018, 42(02): 67-74. |
[7] | 孟苗婧,张金池,郭晓平,吴家森,赵有朋,叶立新,刘胜龙. 海拔对黄山松阔叶混交林土壤微生物功能多样性的影响[J]. 南京林业大学学报(自然科学版), 2017, 41(04): 209-214. |
[8] | 谢静,朱万泽,周鹏,赵广. 贡嘎山木本植物碳同位素沿海拔梯度的变化[J]. 南京林业大学学报(自然科学版), 2014, 38(06): 33-37. |
[9] | 李蒙,严邦祥,赵昌高,徐洪峰,李少欣,伊贤贵,王贤荣*. 大仰山高山湿地山樱花种群数量结构特征[J]. 南京林业大学学报(自然科学版), 2013, 37(05): 40-44. |
[10] | 渠纪腾,阎毛毛,戴晓港,李淑娴*. 马尾松、黄山松及其杂种域球果形态和种子性状变异[J]. 南京林业大学学报(自然科学版), 2012, 36(06): 143-146. |
[11] | 姜艳,王兵,汪玉如. 江西大岗山毛竹林土壤呼吸时空变异及模型模拟[J]. 南京林业大学学报(自然科学版), 2010, 34(06): 47-52. |
[12] | 韩勇,徐宪根,阮宏华*,王邵军,汪家社,徐自坤. 武夷山黄山松凋落叶在不同植物群落中的分解动态[J]. 南京林业大学学报(自然科学版), 2010, 34(03): 141-145. |
[13] | 周焱1,徐宪根1,阮宏华1*,汪家社2,方燕鸿2,吴焰玉2,徐自坤2. 武夷山不同海拔土壤水溶性有机碳的含量特征[J]. 南京林业大学学报(自然科学版), 2009, 33(04): 48-52. |
[14] | 徐侠1,3,权伟1,汪家社2,方燕鸿2,阮宏华1*,叶镜中1. 武夷山不同海拔植被带土壤活性有机碳的季节变化[J]. 南京林业大学学报(自然科学版), 2009, 33(03): 55-59. |
[15] | 周焱1,傅丽娜1,阮宏华1*,徐宪根1,汪家社2,方燕鸿2,吴焰玉2,徐自坤2. 武夷山不同海拔土壤水溶性有机物的紫外一可见光谱特征[J]. 南京林业大学学报(自然科学版), 2008, 32(04): 23-27. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||