南京林业大学学报(自然科学版) ›› 2024, Vol. 48 ›› Issue (5): 69-80.doi: 10.12302/j.issn.1000-2006.202304035
闫平玉(), 张磊, 王佳兴, 冯可乐, 王浩浩, 张含国*()
收稿日期:
2023-04-25
修回日期:
2023-12-27
出版日期:
2024-09-30
发布日期:
2024-10-03
通讯作者:
* 张含国(hanguozhang1@sina.com),教授。作者简介:
闫平玉(1321830425@qq.com),博士生。
基金资助:
YAN Pingyu(), ZHANG Lei, WANG Jiaxing, FENG Kele, WANG Haohao, ZHANG Hanguo*()
Received:
2023-04-25
Revised:
2023-12-27
Online:
2024-09-30
Published:
2024-10-03
摘要:
【目的】红松(Pinus koraiensis)是分布在中国东北地区的珍贵树种,由于近百年的人类干扰,其自然种群分布数量及范围逐渐减少。探究红松的遗传多样性和构建天然红松的核心种质,可为有效保存、管理和利用红松种质资源提供科学依据。【方法】以东北地区黑龙江省鹤北、五营、小北湖和鸡西,以及吉林省露水河5个保存现状良好的红松种群为研究对象,采用表型数据和分子标记相结合的方法,进行其核心种质构建。【结果】分子和表型方差分析结果均表明:红松天然种群的遗传变异主要来源于个体间,分别占总变异的96%和72.84%。鸡西种群与其他种群有着较远的遗传距离,平均遗传分化指数(Fst)为0.026 8,同时具有较高的遗传多样性,Shannon指数和表型多样性指数分别为1.111和2.00。结构分析表明5个红松天然种群没有明显亚群结构。不同林龄红松种群的遗传多样性没有明显变化,且较小林龄的种群不存在杂合缺失和近亲繁殖的现象,针叶性状与地理因素存在广泛的相关性,造成不同红松种群的表型分化。【结论】以分子和表型标记共同构建30%取样比例的红松核心种质,Shannon指数与表型多样性指数分别为1.076、2.018,能够较好地代表红松天然种群的遗传现状,也能更好地促进红松种质资源管理、保护和利用;根据红松遗传结构特征,建议重点从原地保护方面开展对红松天然种质的保护,以促进红松天然种群的生态恢复、种质保护及利用。
中图分类号:
闫平玉,张磊,王佳兴,等. 红松天然种群遗传多样性分析及核心种质构建[J]. 南京林业大学学报(自然科学版), 2024, 48(5): 69-80.
YAN Pingyu, ZHANG Lei, WANG Jiaxing, FENG Kele, WANG Haohao, ZHANG Hanguo. Analysis of genetic diversity and construction of core collections of Korean pine (Pinus koraiensis) natural population[J].Journal of Nanjing Forestry University (Natural Science Edition), 2024, 48(5): 69-80.DOI: 10.12302/j.issn.1000-2006.202304035.
表1
天然红松种群来源信息"
种源区 provenance | 地点 location | 采样点 site | 个体数 number | 经度E/ (°) longitude | 纬度N/ (°) latitude | 海拔/m elevation |
---|---|---|---|---|---|---|
小兴安岭 Xiaoxinganling | 五营 WY | 1 | 25 | 129.252 5 | 48.244 2 | 547 |
2 | 25 | 129.241 3 | 48.191 6 | 367 | ||
3 | 25 | 129.179 1 | 48.183 1 | 594 | ||
鹤北 HB | 1 | 25 | 130.308 7 | 48.078 2 | 458 | |
2 | 25 | 130.360 5 | 48.078 2 | 313 | ||
3 | 25 | 130.284 3 | 48.089 0 | 419 | ||
老爷岭- 张广才岭 Laoyeling- Zhangguangcailing | 鸡西 JX | 1 | 25 | 130.917 9 | 44.810 4 | 663 |
2 | 25 | 130.900 4 | 44.973 6 | 485 | ||
3 | 25 | 130.906 9 | 44.883 1 | 588 | ||
小北湖 XBH | 1 | 22 | 128.566 0 | 44.212 0 | 790 | |
2 | 22 | 128.517 3 | 44.152 4 | 831 | ||
3 | 22 | 128.525 0 | 44.179 6 | 742 | ||
长白山 Changbaishan | 露水河 LSH | 1 | 22 | 127.791 6 | 42.536 8 | 790 |
2 | 22 | 127.765 9 | 42.514 4 | 775 | ||
3 | 22 | 127.783 0 | 42.481 6 | 767 |
表3
天然红松种群遗传多样性"
种群 population | 等位基因数 Na | 有效等位基因数 Ne | Shannon 多样性指数 I | 观测杂合度 Ho | 期望杂合度 He | 无偏期望杂合度 Hue | 固定指数 F |
---|---|---|---|---|---|---|---|
五营WY | 63.000 | 2.865 | 1.037 | 0.467 | 0.501 | 0.505 | 0.042 |
鹤北HB | 64.000 | 2.200 | 0.888 | 0.474 | 0.450 | 0.453 | -0.015 |
鸡西JX | 73.000 | 2.962 | 1.111 | 0.514 | 0.524 | 0.527 | 0.008 |
小北湖XBH | 63.000 | 2.483 | 0.900 | 0.508 | 0.449 | 0.453 | -0.087 |
露水河LSH | 60.000 | 2.303 | 0.915 | 0.500 | 0.474 | 0.477 | -0.069 |
总计total | 92.000 | 2.712 | 1.055 | 0.492 | 0.500 | 0.501 | 0.010 |
表4
红松种群针叶性状变异及多重比较"
种群 population | 针叶长/ mm needle length | 针叶宽/ mm needle width | 针叶长宽比 needle aspect ratio | 针叶鲜质量/ mg needle fresh mass | 针叶干质量/ mg needle dry mass | 含水量/% water content | 叶绿素a 含量/ (mg·g-1) Chl a | 叶绿素b 含量/ (mg·g-1) Chl b | 总叶绿素 含量/ (mg·g-1) total Chl |
---|---|---|---|---|---|---|---|---|---|
五营WY | 106.17 ab | 0.70 b | 150.40 a | 705.2 ab | 294.13 ab | 0.58 c | 1.27 c | 0.47 c | 1.74 c |
鹤北HB | 117.48 c | 0.7 ab | 170.42 b | 769.64 b | 311.65 b | 0.59 d | 1.29 c | 0.52 c | 1.81 c |
鸡西JX | 108.20 b | 0.66 a | 164.64 b | 700.93 a | 358.52 c | 0.49 a | 1.29 c | 0.51 c | 1.80 c |
小北湖XBH | 104.83 ab | 0.71 b | 150.74 a | 660.24 a | 277.65 a | 0.58 c | 0.85 a | 0.30 a | 1.15 a |
露水河LSH | 101.45 a | 0.67 ab | 151.99 a | 679.71 a | 310.06 b | 0.54 b | 1.03 b | 0.38 b | 1.41 b |
总体total | 107.86 | 0.69 | 157.94 | 704.82 | 311.24 | 0.56 | 1.16 | 0.44 | 1.60 |
F种群间 | 13.871 0** | 3.942 2** | 9.673 5** | 5.777 6** | 15.657 5** | 104.569 2** | 37.132 3** | 44.326 4** | 42.815 7** |
表5
红松种群针叶性状变异系数及表型多样性指数"
参数 parameter | 五营WY | 鹤北HB | 鸡西JX | 小北湖XBH | 露水河LSH | 总体total | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
H' | CV/% | H' | CV/% | H' | CV/% | H' | CV/% | H' | CV/% | H' | CV/% | ||
针叶长needle length | 2.00 | 13.26 | 2.06 | 11.84 | 1.97 | 13.57 | 1.99 | 12.00 | 1.93 | 12.62 | 2.05 | 13.58 | |
针叶宽needle width | 2.01 | 9.60 | 2.04 | 14.10 | 2.03 | 12.27 | 2.06 | 14.45 | 2.02 | 11.76 | 2.05 | 12.75 | |
针叶长宽比needle aspect ratio | 1.95 | 16.18 | 1.97 | 16.55 | 1.96 | 15.50 | 1.98 | 15.58 | 1.98 | 14.84 | 2.03 | 16.55 | |
针叶鲜质量needle fresh mass | 2.05 | 21.20 | 2.06 | 19.27 | 2.00 | 23.67 | 2.04 | 20.02 | 2.01 | 18.18 | 2.06 | 21.19 | |
针叶干质量needle dry mass | 2.06 | 21.50 | 1.89 | 19.77 | 2.02 | 22.75 | 2.06 | 19.88 | 1.97 | 18.66 | 2.05 | 22.52 | |
含水量water content | 1.82 | 4.48 | 1.69 | 6.70 | 2.01 | 10.76 | 1.86 | 5.55 | 1.96 | 5.15 | 1.92 | 9.84 | |
叶绿素a含量 Chl a content | 2.08 | 22.40 | 2.02 | 20.21 | 2.00 | 21.74 | 2.02 | 34.42 | 2.03 | 23.11 | 2.07 | 27.87 | |
叶绿素b含量 Chl b content | 1.93 | 24.03 | 2.01 | 20.75 | 2.03 | 27.93 | 1.87 | 36.94 | 1.80 | 30.01 | 2.06 | 32.74 | |
总叶绿素含量Chl(a+b) content | 2.04 | 22.05 | 2.07 | 19.36 | 2.01 | 22.75 | 1.99 | 33.02 | 2.04 | 23.71 | 2.06 | 28.27 | |
均值mean | 1.99 | 17.19 | 1.98 | 16.51 | 2.00 | 18.99 | 1.99 | 21.32 | 1.97 | 17.56 | 2.04 | 20.59 |
表6
不同抽样策略种质库对比分析"
集合号 core No. | 抽样依据 sampling basis | 比例/% ratio | Na | Ne | I | He | F | H' | MD/% | VD/% | VR/% | CR/% |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 分子+表型 molecular & phenotypic | 10 | 6.182 | 2.779 | 1.073 | 0.509 | 0.069 | 1.938 | 10.00 | 10.00 | 100.19 | 70.26 |
2 | 20 | 7.000 | 2.809 | 1.082 | 0.512 | 0.050 | 1.986 | 20.00 | 10.00 | 101.68 | 75.85 | |
3 | 30 | 7.273 | 2.769 | 1.076 | 0.511 | 0.029 | 2.018 | 0.00 | 10.00 | 105.27 | 89.17 | |
4 | 40 | 7.818 | 2.692 | 1.062 | 0.502 | 0.025 | 2.025 | 0.00 | 0.00 | 102.18 | 90.63 | |
5 | 50 | 8.182 | 2.703 | 1.062 | 0.502 | 0.010 | 2.034 | 0.00 | 0.00 | 100.45 | 90.68 | |
平均mean | 7.291 | 2.750 | 1.071 | 0.507 | 0.037 | 2.000 | 6.00 | 6.00 | 101.95 | 83.32 | ||
6 | 分子 molecular | 10 | 4.818 | 2.509 | 0.921 | 0.465 | 0.009 | 1.939 | 0.00 | 10.00 | 84.01 | 59.80 |
7 | 20 | 6.091 | 2.644 | 1.001 | 0.493 | 0.009 | 1.979 | 10.00 | 10.00 | 82.77 | 65.53 | |
8 | 30 | 6.636 | 2.741 | 1.043 | 0.504 | 0.018 | 1.992 | 20.00 | 10.00 | 96.22 | 85.93 | |
9 | 40 | 7.455 | 2.713 | 1.042 | 0.496 | 0.022 | 2.014 | 30.00 | 10.00 | 91.95 | 87.05 | |
10 | 50 | 7.545 | 2.735 | 1.049 | 0.497 | 0.022 | 2.011 | 30.00 | 10.00 | 92.22 | 88.83 | |
平均mean | 6.509 | 2.668 | 1.011 | 0.491 | 0.016 | 1.987 | 18.00 | 10.00 | 89.43 | 77.43 | ||
11 | 表型 phenotypic | 10 | 5.455 | 2.577 | 0.968 | 0.472 | 0.041 | 1.900 | 0.00 | 0.00 | 82.49 | 67.32 |
12 | 20 | 6.182 | 2.788 | 1.034 | 0.498 | 0.025 | 1.962 | 0.00 | 10.00 | 87.70 | 81.48 | |
13 | 30 | 7.000 | 2.773 | 1.040 | 0.497 | 0.032 | 2.006 | 0.00 | 0.00 | 87.30 | 81.74 | |
14 | 40 | 7.273 | 2.742 | 1.047 | 0.498 | 0.027 | 2.011 | 0.00 | 0.00 | 88.59 | 84.00 | |
15 | 50 | 7.545 | 2.708 | 1.044 | 0.495 | 0.020 | 2.023 | 30.00 | 0.00 | 89.59 | 87.68 | |
平均mean | 6.691 | 2.718 | 1.027 | 0.492 | 0.029 | 1.980 | 6.00 | 2.00 | 87.14 | 80.44 |
[1] | 马建路, 庄丽文, 陈动, 等. 红松的地理分布[J]. 东北林业大学学报, 1992, 20(5):40-48. |
MA J L, ZHUANG L W, CHEN D, et al. Geographic distribution of Pinus koraiensis in the world[J]. J Northeast For Univ, 1992, 20(5):40-48. | |
[2] | YU D P, ZHOU L, ZHOU W M, et al. Forest management in northeast China:history,problems,and challenges[J]. Environ Manage, 2011, 48(6):1122-1135.DOI: 10.1007/s00267-011-9633-4. |
[3] | 张振, 张含国, 莫迟, 等. 红松转录组SSR分析及EST-SSR标记开发[J]. 林业科学, 2015, 51(8):114-120. |
ZHANG Z, ZHANG H G, MO C, et al. Transcriptome sequencing analysis and development of EST-SSR markers for Pinus koraiensis[J]. Sci Silvae Sin, 2015, 51(8):114-120.DOI: 10.11707/j.1001-7488.20150815. | |
[4] | FENG F J, HAN S J, WANG H M. Genetic diversity and genetic differentiation of natural Pinus koraiensis population[J]. J For Res, 2006, 17(1):21-24.DOI: 10.1007/s11676-006-0005-5. |
[5] | 王欢利, 严灵君, 黄犀, 等. 南京椴群体遗传多样性和遗传结构分析[J]. 南京林业大学学报(自然科学版), 2023, 47(1):145-153. |
WANG H L, YAN L J, HUANG X, et al. Genetic diversity and genetic structure of Tilia miqueliana population[J]. J Nanjing For Univ (Nat Sci Ed), 2023, 47(1):145-153. DOI: 10.12302/j.issn.1000-2006.202110049. | |
[6] | 顾万春. 森林遗传资源学概论[M]. 北京: 中国科学技术出版社, 1998. |
GU W C. Introduction of forest genetic resource science[M]. Beijing: China Science and Technology Press, 1998. | |
[7] | 尚占环, 姚爱兴. 生物遗传多样性研究方法及其保护措施[J]. 宁夏农学院学报, 2002, 23(1):66-69. |
SHANG Z H, YAO A X. Research means of genetic diversity and its protective measures[J]. J Ningxia Agric Coll, 2002, 23(1):66-69. DOI: 10.3969/j.issn.1673-0747.2002.01.021. | |
[8] | 张巍, 王清君, 郭兴. 红松不同种源的遗传多样性分析[J]. 森林工程, 2017, 33(2):17-21. |
ZHANG W, WANG Q J, GUO X. Study on the genetic diversity of Pinus koraiensis in different provenances[J]. For Eng, 2017, 33(2):17-21.DOI: 10.16270/j.cnki.slgc.2017.02.004. | |
[9] | 童茜坪, 剡丽梅, 张磊, 等. 红松种子园单株ISSR-PCR遗传多样性分析[J]. 林业科技, 2020, 45(2):17-20. |
TONG Q P, YAN L M, ZHANG L, et al. Genetic diversity analysis on indivitual of Pinus koraiensis in seed orchard based on ISSR-PCR[J]. For Sci Technol, 2020, 45(2):17-20.DOI: 10.19750/j.cnki.1001-9499.2020.02.005. | |
[10] | FRANKEL O H, BROWN A H D. Current plant genetic resources: a critical appraisal[M]. Londen: Oxford & IBH Publishing Co, 1984:3-13. |
[11] | VASCONCELOS E S, CRUZ C D, BHERING L L, et al. Strategies for sampling and establishment of core collections[J]. Pesquisa Agropecuaria Brasileira, 2007, 42:507-514.DOI:10.1590/S0100-204X2007000400008. |
[12] | 李自超, 张洪亮, 曾亚文, 等. 云南地方稻种资源核心种质取样方案研究[J]. 中国农业科学, 2000, 33(5):1-7. |
LI Z C, ZHANG H L, ZENG Y W, et al. Study on sampling schemes of core collection of local varieties of rice in Yunnan,China[J]. Sci Agric Sin, 2000, 33(5):1-7.DOI: 10.3321/j.issn:0578-1752.2000.05.001. | |
[13] | 赵冰, 张启翔. 中国蜡梅种质资源核心种质的初步构建[J]. 北京林业大学学报, 2007, 29(S1):16-21. |
ZHAO B, ZHANG Q X. Preliminary construction of core germplasm of Chimonanthus praecox germplasm resources in China[J]. J Beijing For Univ, 2007, 29(S1):16-21.DOI: CNKI:SUN:BJLY.0.2007-S1-005. | |
[14] | LIU M, HU X, WANG X, et al. Constructing a core collection of the medicinal plant Angelica biserrata using genetic and metabolic data[J]. Front Plant Sci, 2020, 11:600249.DOI: 10.3389/fpls.2020.600249. |
[15] | BOCCACCI P, ARAMINI M, ORDIDGE M, et al. Comparison of selection methods for the establishment of a core collection using SSR markers for hazelnut (Corylus avellana L.) accessions from European germplasm repositories[J]. Tree Genet Genomes, 2021, 17(6):48.DOI: 10.1007/s11295-021-01526-7. |
[16] | YANG H B, LIU Q H, ZHANG R, et al. Genetic diversity of second generation-parental germplasm of Masson pine revealed by SSR markers and establishment of a core germplasm collection[J]. Scand J For Res, 2021, 36(7/8):524-531.DOI: 10.1080/02827581.2021.1981432. |
[17] | DUAN H J, CAO S, ZHENG H Q, et al. Genetic characterization of Chinese fir from six provinces in southern China and construction of a core collection[J]. Sci Rep, 2017, 7(1):13814.DOI: 10.1038/s41598-017-13219-0. |
[18] | GUO Q, LIU J, LI J K, et al. Genetic diversity and core collection extraction of Robinia pseudoacacia L.germplasm resources based on phenotype,physiology,and genotyping markers[J]. Ind Crops Prod, 2022, 178:114627.DOI: 10.1016/j.indcrop.2022.114627. |
[19] | WANG X L, CAO Z L, GAO C J, et al. Strategy for the construction of a core collection for Pinus yunnanensis Franch.to optimize timber based on combined phenotype and molecular marker data[J]. Genet Resour Crop Evol, 2021, 68(8):3219-3240.DOI: 10.1007/s10722-021-01182-9. |
[20] | 夏德安, 杨书文, 杨传平, 等. 红松种源试验研究(Ⅰ):种源的初步区划[J]. 东北林业大学学报, 1991, 19(S2):122-128. |
XIA D A, YANG S W, YANG C P, et al. Experimental study on provenance of Korean pine (Ⅰ): preliminary division of provenance[J]. J Northeast For Univ, 1991, 19(S2):122-128. | |
[21] | LIEWLAKSANEEYANAWIN C, RITLAND C E, EL-KASSABY Y A, et al. Single-copy,species-transferable microsatellite markers developed from loblolly pine ESTs[J]. Theor Appl Genet, 2004, 109(2):361-369.DOI: 10.1007/s00122-004-1635-7. |
[22] | ECHT C S, SAHA S, DEEMER D L, et al. Microsatellite DNA in genomic survey sequences and UniGenes of loblolly pine[J]. Tree Genet Genomes, 2011, 7(4):773-780.DOI: 10.1007/s11295-011-0373-7. |
[23] | LEA M V, SYRING J, JENNINGS T, et al. Development of nuclear microsatellite loci for Pinus albicaulis Engelm.(Pinaceae),a conifer of conservation concern[J]. PLoS One, 2018, 13(10):e0205423.DOI: 10.1371/journal.pone.0205423. |
[24] | XIANG X Y, ZHANG Z X, WANG Z G, et al. Transcriptome sequencing and development of EST-SSR markers in Pinus dabeshanensis,an endangered conifer endemic to China[J]. Mol Breed, 2015, 35(8):158.DOI: 10.1007/s11032-015-0351-0. |
[25] | DONG W L, WANG R N, YAN X H, et al. Characterization of polymorphic microsatellite markers in Pinus armandii (Pinaceae),an endemic conifer species to China[J]. Appl Plant Sci, 2016, 4(10):apps.1600072.DOI: 10.3732/apps.1600072. |
[26] | YU J H, CHEN C M, TANG Z H, et al. Isolation and characterization of 13 novel polymorphic microsatellite markers for Pinus koraiensis (Pinaceae)[J]. Am J Bot, 2012, 99(10):e421-e424.DOI: 10.3732/ajb.1200145. |
[27] | LI X, LIU X T, WEI J T, et al. Development and transferability of EST-SSR markers for Pinus koraiensis from cold-stressed transcriptome through illumina sequencing[J]. Genes, 2020, 11(5):500.DOI: 10.3390/genes11050500. |
[28] | 倪州献, 白天道, 蔡恒, 等. 马尾松基因组SSR标记在松属其他树种中的通用性分析[J]. 分子植物育种, 2015, 13(12):2811-2817. |
NI Z X, BAI T D, CAI H, et al. The transferability of Pinus massoniana SSR in other Pinus species[J]. Mol Plant Breed, 2015, 13(12):2811-2817.DOI: 10.13271/j.mpb.013.002811. | |
[29] | DOU J J, ZHOU R C, TANG A J, et al. Development and characterization of nine microsatellites for an endangered tree,Pinus wangii (Pinaceae)[J]. Appl Plant Sci, 2013, 1(2):apps.1200134.DOI: 10.3732/apps.1200134. |
[30] | 何启平, 陈莹. 校园常见植物叶绿素提取方法比较及其含量测定[J]. 黑龙江农业科学, 2015, 38(10):117-120. |
HE Q P, CHEN Y. Comparision on different extaction techniques about chlorophyll and determanation of chlorophyll content of common plants in campus[J]. Heilongjiang Agric Sci, 2015, 38(10):117-120.DOI: 10.11942/j.issn1002-2767.2015.10.0117. | |
[31] | 樊文强, 盖红梅, 孙鑫, 等. SSR数据格式转换软件DataFormater[J]. 分子植物育种, 2016, 14(1):265-270. |
FAN W Q, GAI H M, SUN X, et al. Data formater,a software for SSR data formatting to develop population genetics analysis[J]. Mol Plant Breed, 2016, 14(1):265-270.DOI: 10.13271/j.mpb.014.000265. | |
[32] | LIU K J, MUSE S V. Power marker:an integrated analysis environment for genetic marker analysis[J]. Bioinformatics, 2005, 21(9):2128-2129.DOI: 10.1093/bioinformatics/bti282. |
[33] | PEAKALL R, SMOUSE P E. GenAlEx 6.5:genetic analysis in Excel.Population genetic software for teaching and research:an update[J]. Bioinformatics, 2012, 28(19):2537-2539.DOI: 10.1093/bioinformatics/bts460. |
[34] | TAMURA K, PETERSON D, PETERSON N, et al. MEGA5:molecular evolutionary genetics analysis using maximum likelihood,evolutionary distance,and maximum parsimony methods[J]. Mol Biol Evol, 2011, 28(10):2731-2739.DOI: 10.1093/molbev/msr121. |
[35] | EVANNO G, REGNAUT S, GOUDET J. Detecting the number of clusters of individuals using the software STRUCTURE:a simulation study[J]. Mol Ecol, 2005, 14(8):2611-2620.DOI: 10.1111/j.1365-294X.2005.02553.x. |
[36] | 徐存宝, 刘滨凡, 刘维斌. 天然红松林结构规律的探讨[J]. 林业科技, 1991, 16(4):17-19. |
XU C B, LIU B F, LIU W B. Discussion on structural law of natural Korean pine forest[J]. For Sci Technol, 1991, 16(4):17-19. | |
[37] | 郭文丽, 李义良, 赵奋成, 等. 湿加松无性系表型遗传多样性研究[J]. 植物研究, 2019, 39(2):259-266. |
GUO W L, LI Y L, ZHAO F C, et al. Phenotypic genetic diversity of Pinus elliottii × P.caribaea Morelet var. hondurensis clones[J]. Bull Bot Res, 2019, 39(2):259-266.DOI: 10.7525/j.issn.1673-5102.2019.02.012. | |
[38] | 陈存, 丁昌俊, 黄秦军, 等. 美洲黑杨表型核心种质库构建[J]. 林业科学研究, 2021, 34(2):1-11. |
CHEN C, DING C J, HUANG Q J, et al. Construction of phenotypic core collection of Populus deltoides[J]. For Res, 2021, 34(2):1-11.DOI: 10.13275/j.cnki.lykxyj.2021.02.001. | |
[39] | 贾丙瑞, 周广胜, 刘永志, 等. 中国天然林凋落物量的空间分布及其影响因子分析[J]. 中国科学:生命科学, 2016, 46(11):1304-1311. |
JIA B R, ZHOU G S, LIU Y Z, et al. Spatial pattern and environmental controls of annual litterfall production in natural forest ecosystems in China[J]. Sci Sin Vit, 2016, 46(11):1304-1311. DOI:10.1360/N052015-00319. | |
[40] | 徐海明. 种质资源核心库构建方法的研究及其应用[D]. 杭州: 浙江大学, 2005. |
XU H M. Study on methods of constructing core collection of germplasm and their applications in core construction[D]. Hangzhou: Zhejiang University, 2005. | |
[41] | HU J, ZHU J, XU H M. Methods of constructing core collections by stepwise clustering with three sampling strategies based on the genotypic values of crops[J]. Theor Appl Genet, 2000, 101(1):264-268.DOI: 10.1007/s001220051478. |
[42] | 冯富娟, 隋心, 张冬东. 不同种源红松遗传多样性的研究[J]. 林业科技, 2008, 33(1):1-4. |
FENG F J, SUI X, ZHANG D D. Studies on the genetic diversity of Pinus koraiensis in different provenance[J]. For Sci Technol, 2008, 33(1):1-4.DOI: 10.3969/j.issn.1001-9499.2008.01.001. | |
[43] | 张亚红, 贾会霞, 王志彬, 等. 滇杨种群遗传多样性与遗传结构[J]. 生物多样性, 2019, 27(4):355-365. |
ZHANG Y H, JIA H X, WANG Z B, et al. Genetic diversity and population structure of Populus yunnanensis[J]. Biodivers Sci, 2019, 27(4):355-365.DOI: 10.17520/biods.2019016. | |
[44] | CHEN S Y, ZHAO W S, WANG J. Genetic diversity and genetic differentiation of natural populations of Pinus kesiya var. langbinanensis[J]. J For Res, 2002, 13(4):273-276.DOI: 10.1007/BF02860090. |
[45] | 邵丹, 裴赢, 张恒庆. 凉水国家自然保护区天然红松种群遗传多样性在时间尺度上变化的cpSSR分析[J]. 植物研究, 2007, 27(4):473-477. |
SHAO D, PEI Y, ZHANG H Q. cpSSR analysis of variation of genetic diversity in temporal dimension of natural population of Pinus koraiensis in Liangshui National Nature Reserve[J]. Bull Bot Res, 2007, 27(4):473-477.DOI: 10.3969/j.issn.1673-5102.2007.04.020. | |
[46] | 李斌, 顾万春, 卢宝明. 白皮松天然群体种实性状表型多样性研究[J]. 生物多样性, 2002, 10(2):181-188. |
LI B, GU W C, LU B M. A study on phenotypic diversity of seeds and cones characteristics in Pinus bungeana[J]. Biodivers Sci, 2002, 10(2):181-188.DOI: 10.3321/j.issn:1005-0094.2002.02.008. | |
[47] | LOVELESS M D, HAMRICK J L. Ecological determinants of genetic structure in plant populations[J]. Annu Rev Ecol Syst, 1984, 15:65-95.DOI: 10.1146/annurev.es.15.110184.000433. |
[48] | BROWN A H D. Plant population genetics,breeding,and genetic resources[M]. Sunderland Mass: Sinauer Associates, 1990. |
[49] | FRANKHAM R, BALLOU J D, BRISCOE D A, et al. Introduction to conservation genetics:the broader context:population viability analysis (PVA)[M]. Cambridge: Cambridge University Press, 2002. |
[50] | 陈向向, 盖中帅, 翟军团, 等. 中国西北地区天然胡杨群体遗传多样性及核心保护单元的构建[J]. 生物多样性, 2021, 29(12):1638-1649. |
CHEN X X, GAI Z S, ZHAI J T, et al. Genetic diversity and construction of core conservation units of the natural populations of Populus euphratica in northwest China[J]. Biodivers Sci, 2021, 29(12):1638-1649.DOI: 10.17520/biods.2021249. | |
[51] | 陈存, 丁昌俊, 张静, 等. 美洲黑杨群体结构分析及核心种质库构建[J]. 林业科学, 2020, 56(9):67-76. |
CHEN C, DING C J, ZHANG J, et al. Population structure analysis and core collection construction of Populus deltoides[J]. Sci Silvae Sin, 2020, 56(9):67-76.DOI: 10.11707/j.1001-7488.20200908. | |
[52] | 徐益, 张列梅, 郭艳春, 等. 黄麻核心种质的遴选[J]. 作物学报, 2019, 45(11):1672-1681. |
XU Y, ZHANG L M, GUO Y C, et al. Core collection screening of a germplasm population in jute(Corchorus spp.)[J]. Acta Agron Sin, 2019, 45(11):1672-1681.DOI: 10.3724/SP.J.1006.2019.94008. | |
[53] | BELAJ A, DEL CARMEN DOMINGUEZ-GARCÍA M, ATIENZA S G, et al. Developing a core collection of olive (Olea europaea L.) based on molecular markers (DArTs,SSRs,SNPs) and agronomic traits[J]. Tree Genet Genomes, 2012, 8(2):365-378.DOI: 10.1007/s11295-011-0447-6. |
[54] | ZHANG Y X, ZHANG X R, CHE Z, et al. Genetic diversity assessment of sesame core collection in China by phenotype and molecular markers and extraction of a mini-core collection[J]. BMC Genet, 2012, 13:102.DOI: 10.1186/1471-2156-13-102. |
[55] | DZIALUK A, CHYBICKI I, GOUT R, et al. No reduction in genetic diversity of Swiss stone pine (Pinus cembra L.) in Tatra Mountains despite high fragmentation and small population size[J]. Conserv Genet, 2014, 15(6):1433-1445.DOI: 10.1007/s10592-014-0628-6. |
[56] | 武星彤, 陈璐, 王敏求, 等. 丹霞梧桐群体遗传结构及其遗传分化[J]. 生物多样性, 2018, 26(11):1168-1179. |
WU X T, CHEN L, WANG M Q, et al. Population structure and genetic divergence in Firmiana danxiaensis[J]. Biodivers Sci, 2018, 26(11):1168-1179.DOI: 10.17520/biods.2018223. | |
[57] | TIJERINO A, KORPELAINEN H. Molecular characterization of Nicaraguan Pinus tecunumanii Schw.ex Eguiluz et Perry populations for in situ conservation[J]. Trees, 2014, 28(4):1249-1253.DOI: 10.1007/s00468-014-1005-2. |
[58] | 吕锋, 解孝满, 韩彪, 等. 基于SSR标记的麻栎天然群体遗传多样性分析[J]. 南京林业大学学报(自然科学版), 2022, 46(3):109-116. |
LYU F, XIE X M, HAN B, et al. Genetic diversity analyses of Quercus acutissima based on SSR markers[J]. J Nanjing For Univ (Nat Sci Ed), 2022, 46(3):109-116.DOI: 10.12302/j.issn.1000-2006.202101025. |
[1] | 毛立彦, 李慧敏, 龙凌云, 黄秋伟, 唐毓玮, 於艳萍, 黄歆怡, 檀小辉, 农晓慧, 朱天龙, 陆祖双. 基于SSR分子标记的睡莲遗传多样性分析[J]. 南京林业大学学报(自然科学版), 2024, 48(5): 57-68. |
[2] | 林强, 陆天宇, 沈海龙, 王元兴, 张鹏. 长期结实和不结实红松针叶光合生理参数的差异[J]. 南京林业大学学报(自然科学版), 2023, 47(3): 137-146. |
[3] | 王芝懿, 李振芳, 彭婵, 陈英, 张新叶. 基于荧光SSR标记的紫薇遗传多样性分析[J]. 南京林业大学学报(自然科学版), 2023, 47(2): 61-69. |
[4] | 王帆, 贾炜玮, 唐依人, 李丹丹. 基于TLS的红松树冠半径提取及其外轮廓模型构建[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 13-22. |
[5] | 杨永超, 段文标, 陈立新, 曲美学, 王亚飞, 王美娟, 石金永, 潘磊. 模拟氮磷沉降和凋落物处理对两种林型红松林土壤有机碳组分的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 57-66. |
[6] | 王欢利, 严灵君, 黄犀, 王仲伟, 汤诗杰. 南京椴群体遗传多样性和遗传结构分析[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 145-153. |
[7] | 陈赢男, 韦素云, 曲冠正, 胡建军, 王军辉, 尹佟明, 潘惠新, 卢孟柱, 康向阳, 李来庚, 黄敏仁, 王明庥. 现代林木育种关键核心技术研究现状与展望[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 1-9. |
[8] | 冯一宁, 李因刚, 祁铭, 周鹏燕, 周琦, 董乐, 徐立安. 基于SSR标记的福建省闽楠代表性群体遗传多样性分析[J]. 南京林业大学学报(自然科学版), 2022, 46(4): 102-108. |
[9] | 贾庆彬, 刘庚, 赵佳丽, 李奎友, 孙文生. 红松半同胞家系生长性状变异分析与优良家系选择[J]. 南京林业大学学报(自然科学版), 2022, 46(4): 109-116. |
[10] | 吕锋, 解孝满, 韩彪, 鲁仪增, 王磊, 董昕, 王艳, 陆璐, 刘莉, 宗绍宁, 李文清. 基于SSR标记的麻栎天然群体遗传多样性分析[J]. 南京林业大学学报(自然科学版), 2022, 46(3): 109-116. |
[11] | 葛大朋, 任媛, 赵俊, 王玉婷, 刘学庆, 苑兆和. 西藏石榴野生群体的SSR遗传多样性分析[J]. 南京林业大学学报(自然科学版), 2022, 46(3): 127-133. |
[12] | 李佳欣, 牟长城, 田博宇, 叶林. 林隙大小和隙内位置对小兴安岭蒙古栎林内红松光合能力的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(2): 159-168. |
[13] | 何旭东, 郑纪伟, 教忠意, 窦全琴, 黄利斌. 基于SLAF-seq技术的舒玛栎群体遗传多样性与遗传结构分析[J]. 南京林业大学学报(自然科学版), 2022, 46(2): 81-87. |
[14] | 辛士冬, 姜立春, 穆林. 黑龙江省红松人工林林分乔木层可加性碳储量模型[J]. 南京林业大学学报(自然科学版), 2022, 46(1): 115-121. |
[15] | 高景斌, 徐六一, 叶建仁. 马尾松松材线虫病抗性无性系的筛选和遗传多样性分析[J]. 南京林业大学学报(自然科学版), 2021, 45(5): 109-118. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||