南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (3): 144-152.doi: 10.12302/j.issn.1000-2006.202311009
赵薇1(), 王浩宇1, 朱铭玮1, 徐志标2, 黄涛1, 孙李勇1, 侯静1, 李淑娴1,*(
)
收稿日期:
2023-11-08
接受日期:
2024-03-12
出版日期:
2025-05-30
发布日期:
2025-05-27
通讯作者:
*李淑娴(shuxianli@njfu.com.cn),教授。作者简介:
基金资助:
ZHAO Wei1(), WANG Haoyu1, ZHU Mingwei1, XU Zhibiao2, HUANG Tao1, SUN Liyong1, HOU Jing1, LI Shuxian1,*(
)
Received:
2023-11-08
Accepted:
2024-03-12
Online:
2025-05-30
Published:
2025-05-27
摘要:
【目的】娜塔栎以种子繁殖为主,但该种子对脱水敏感,不易运输和贮藏,分析娜塔栎种子失水过程中的生理变化,为揭示娜塔栎种子不耐脱水机制提供理论依据。【方法】以娜塔栎种子为材料,分别测定种子含水率为39.6%、35.0%、30.0%、25.0%、20.0%、15.0%、13.0%时的发芽率和超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、脯氨酸、糖类物质、可溶性蛋白、丙二醛(MDA)等生理指标,将发芽率与各处理所测指标进行相关性分析,探讨娜塔栎种子不耐脱水的原因。【结果】当含水率高于25.0%时,种子发芽率在90.0%以上;之后随种子失水程度增加,发芽率不断下降:含水率下降至15.0%时,发芽率仅为38.3%;含水率下降至13.0%时,发芽率为0.0%。对种子发芽率(y)和含水率(x)进行拟合后得到关系方程y = 0.016 5x3- 1.553 6x2 + 47.84x - 392.03,计算得出种子的临界含水率为21.4%,半致死含水率为16.7%。娜塔栎种子失水过程中MDA含量不断增加。失水初期,抗氧化酶系统中SOD活性不断增强,在含水率低于25.0%时,SOD活性迅速下降;随含水率降低,CAT活性持续下降,含水率为25.0%时显著下降。随含水率降低,渗透调节物质脯氨酸、可溶性糖、蔗糖均呈现先上升后下降的变化趋势,脯氨酸及蔗糖均于含水率20.0%时达到最大值,可溶性糖则于含水率15.0%时达到最大值;还原糖含量持续增加;可溶性蛋白含量呈下降趋势,但各失水阶段差异不显著。相关性分析表明,种子发芽率与SOD、CAT活性呈显著正相关,与还原糖、MDA、脯氨酸、可溶性糖、蔗糖含量呈显著负相关。【结论】娜塔栎种子不耐脱水,在运输、贮藏种子时其含水率应维持在21.4%(临界含水率)以上,最低不能低于16.7%(半致死含水率)。娜塔栎种子失水初期,SOD活性增强,渗透调节物质脯氨酸、蔗糖、可溶性糖含量增加,对娜塔栎种子抵御失水胁迫有重要作用。失水过程中CAT活性、可溶性蛋白含量不断下降,以及MDA、还原糖持续积累,可能是导致娜塔栎种子对脱水敏感的重要原因。
中图分类号:
赵薇,王浩宇,朱铭玮,等. 娜塔栎种子失水过程中的生理响应[J]. 南京林业大学学报(自然科学版), 2025, 49(3): 144-152.
ZHAO Wei, WANG Haoyu, ZHU Mingwei, XU Zhibiao, HUANG Tao, SUN Liyong, HOU Jing, LI Shuxian. Physiological response of Quercus texana seeds during dehydration[J].Journal of Nanjing Forestry University (Natural Science Edition), 2025, 49(3): 144-152.DOI: 10.12302/j.issn.1000-2006.202311009.
表2
娜塔栎种子失水过程中生理生化指标相关性分析"
指标 index | 含水率 moisture content | 发芽率 germination percentage | SOD活性 SOD activity | CAT活性 CAT activity | 脯氨酸 含量 proline content | 丙二醛 含量 MDA content | 可溶性糖 含量 soluble sugar content | 还原糖含量 reducing sugar content | 蔗糖含量 sucrose content | 可溶性 蛋白含量 soluble protein content |
---|---|---|---|---|---|---|---|---|---|---|
含水率 moisture content | 1 | |||||||||
发芽率 germination percentage | 0.817* | 1 | ||||||||
SOD活性 SOD activity | 0.401 | 0.771* | 1 | |||||||
CAT活性 CAT activity | 0.900** | 0.854** | 0.561 | 1 | ||||||
脯氨酸含量 proline content | -0.935** | -0.712* | -0.372 | -0.827** | 1 | |||||
丙二醛含量 MDA content | -0.871** | -0.683* | -0.338 | -0.760** | 0.822* | 1 | ||||
可溶性糖含量 soluble sugar content | -0.972** | -0.767* | -0.403 | -0.863** | 0.935** | 0.853** | 1 | |||
还原糖含量 reducing sugar content | -0.965** | -0.801** | -0.371 | -0.886** | 0.875** | 0.827** | 0.955** | 1 | ||
蔗糖含量 sucrose content | -0.884* | -0.868* | 0.073 | -0.737** | 0.855* | 0.740** | 0.875** | 0.820** | 1 | |
可溶性蛋白含量 soluble protein content | 0.633* | 0.445 | -0.034 | 0.497 | -0.559 | -0.500 | -0.602* | -0.621* | -0.663* | 1 |
[1] | 张俊杰, 蒋学皎, 郭庭鸿, 等. 顽拗性种子脱水敏感性研究进展[J]. 西北林学院学报, 2021, 36(3):144-151. |
ZHANG J J, JIANG X J, GUO T H, et al. Research progress on desiccation-sensitivity of recalcitrant seeds[J]. Journal of Northwest Forestry University, 2021, 36(3):144-151.DOI: 10.3969/j.issn.1001-7461.2021.03.22. | |
[2] | 刘忠奇, 贺记外, 张海清, 等. 植物种子脱水耐性的研究现状分析与展望[J]. 中国农学通报, 2020, 36(2):36-41. |
LIU Z Q, HE J W, ZHANG H Q, et al. Dehydration tolerance of plant seeds:current research situation and prospects[J]. Chinese Agricultural Science Bulletin, 2020, 36(2):36-41. | |
[3] | 乔孝禄, 马青江, 赵婷婷, 等. 失水对沼生栎种子质量影响的研究[J]. 种子, 2018, 37(5):70-72. |
QIAO X L, MA Q J, ZHAO T T, et al. Study on the effect of water loss on seed quality of Quercus palustris[J]. Seed, 2018, 37(5):70-72.DOI: 10.16590/j.cnki.1001-4705.2018.05.070. | |
[4] | MARQUES A, NIJVEEN H, SOMI C, et al. Induction of desiccation tolerance in desiccation sensitive Citrus limon seeds[J]. Journal of Integrative Plant Biology, 2019, 61(5):624-638.DOI: 10.1111/jipb.12788. |
[5] | 张俊杰, 柴胜丰, 王满莲, 等. 珍稀濒危植物金丝李种子脱水耐性和贮藏特性[J]. 广西植物, 2019, 39(2):199-208. |
ZHANG J J, CHAI S F, WANG M L, et al. Dehydration tolerance and storage characteristics of seeds of rare and endangered plant Garcinia paucinervis[J]. Guihaia, 2019, 39(2):199-208.DOI: 10.11931/guihaia.gxzw201802027. | |
[6] | 杨凯, 李磊, 龙光强, 等. 顽拗性三七种子后熟过程超微结构和抗氧化酶变化[J]. 广西植物, 2016, 36(12):1519-1525. |
YANG K, LI L, LONG G Q, et al. Changes of antioxidant enzyme and ultrastructure in recalcitrant seeds of Panax notoginseng during after-ripening process[J]. Guihaia, 2016, 36(12):1519-1525.DOI: 10.11931/guihaia.gxzw201510018. | |
[7] | SANO N, RAJJOU L, NORTH H M, et al. Staying alive:molecular aspects of seed longevity[J]. Plant & Cell Physiology, 2016, 57(4):660-674.DOI: 10.1093/pcp/pcv186. |
[8] | 居萍, 孙燕, 杜庆平. 白玉兰种子自然脱水过程中生理特性的变化[J]. 江苏农业科学, 2010, 38(5):250-252. |
JU P, SUN Y, DU Q P. Changes of physiological characteristics in seeds of Magnolia denudata during the process of seed dehydration[J]. Jiangsu Agricultural Sciences, 2010, 38(5):250-252.DOI: 10.3969/j.issn.1002-1302.2010.05.096. | |
[9] | 马若寒. 重庆龙眼主栽品种果实品质及种子脱水敏感性研究[D]. 重庆: 西南大学, 2021. |
MA R H. Study on fruit quality and seed dehydration sensitivity of main Longan cultivars in Chongqing[D]. Chongqing: Southwest University, 2021.DOI: 10.27684/d.cnki.gxndx.2021.004549. | |
[10] | 曹基武, 谭梓峰, 尹建, 等. 北美橡树[M]. 北京: 科学出版社, 2015. |
CAO J W, TAN Z F, YIN J, et al. Native oaks of North America[M]. Beijing: Science Press, 2015. | |
[11] | 王雄. 娜塔栎三个种源生长生理特性及园林应用研究[D]. 长沙: 中南林业科技大学, 2018. |
WANG X. Study on growth physiological characteristics and landscape application of three provenances of Quercus nuttallii Palmer[D]. Changsha: Central South University of Forestry & Technology, 2018. | |
[12] | 远皓, 杨传林. 蒙古栎的价值和作用[J]. 中国林副特产, 2016(5):97-98. |
YUAN H, YANG C L. The value and effects of Quercus mongolica[J]. Forest By-Product and Speciality in China, 2016(5):97-98.DOI: 10.13268/j.cnki.fbsic.2016.05.043. | |
[13] | 许晓波. 新优树种纳塔栎秋色叶变化及其对环境的适应性[J]. 中国农学通报, 2015, 31(16):14-18. |
XU X B. Variation of autumn-color leaf and the adaptability to environment of Quercus nuttallii[J]. Chinese Agricultural Science Bulletin, 2015, 31(16):14-18. | |
[14] | XAVIER COSTA C R, LOPES PIVETTA K F, DE SOUZA G R B, et al. Effects of temperature,light and seed moisture content on germination of Euterpe precatoria palm[J]. American Journal of Plant Sciences, 2018, 9(1):98-106.DOI: 10.4236/ajps.2018.91009. |
[15] | GUPTA N, CHINNAPPA M, SINGH P M, et al. Determination of the physio-biochemical changes occurring during seed development,maturation,and desiccation tolerance in Moringa oleifera Lam[J]. South African Journal of Botany, 2022, 144:430-436.DOI: 10.1016/j.sajb.2021.09.010. |
[16] | 李宏归, 丑琉懿, 廖飞勇. 赤霉素GA3对盐胁迫下娜塔栎幼苗生理特性的影响[J/OL]. 分子植物育种, 2022:1-10.(2022-04-19).https://kns.cnki.net/kcms/detail/46.1068.S.20220415.1647.028.html. |
LI H G, CHOU L Y, LIAO F Y. Effects of gibberellin GA3 on physiological characteristics of Quercus natans seedlings under salt stress[J/OL]. Molecular Plant Breeding, 2022:1-10.(2022-04-19).https://kns.cnki.net/kcms/detail/46.1068.S.20220415.1647.028.html. | |
[17] | 卜晓婷, 付威, 李淑娴, 等. 幼化和外源激素对娜塔栎嫩枝扦插生根的影响及其生根解剖学观察[J]. 南京林业大学学报(自然科学版), 2024, 48(2):129-136. |
BU X T, FU W, LI S X, et al. Effects of rejuvenation and hormone treatment on the rooting of softwood cuttings of Quercus texana and anatomical observations of rooting[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2024, 48(2):129-136.DOI:10.12302/j.issn.1000-2006.202209004. | |
[18] | 许樊蓉, 唐盛兰, 吴文, 等. 生物炭添加对娜塔栎容器苗生长和营养状况的影响[J]. 中南林业科技大学学报, 2022, 42(7):76-84. |
XU F R, TANG S L, WU W, et al. Effects of biochar treatments on the growth and nutrient status of Quercus nuttallii container seedlings[J]. Journal of Central South University of Forestry & Technology, 2022, 42(7):76-84.DOI: 10.14067/j.cnki.1673-923x.2022.07.009. | |
[19] | 国家质量技术监督局发布. 林木种子检验规程[M]. 北京: 中国标准出版社, 1999. |
The State Bureau of Quality and Technical Supervision. Rules for forest tree seed testing[M]. Beijing: Standards Press of China, 1999. | |
[20] | 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000. |
LI H S. Principles and techniques of plant physiological biochemical experiment[M]. Beijing: Higher Education Press, 2000. | |
[21] | 高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006. |
GAO J F. Experimental guidance for plant physiology[M]. Beijing: Higher Education Press, 2006. | |
[22] | FARRANT J M, PAMMENTER N W, BERJAK P. Recalcitrant: a current assessment[J]. Seed Science and Technology, 1988, 16(2): 155-166. |
[23] | 彭麟麟. 栎属种子的低温耐受性和储藏寿命研究[D]. 昆明: 云南大学, 2022. |
PENG L L. Study of chilling resistance and storage life of oaks’ seeds[D]. Kunming: Yunnan University, 2022.DOI: 10.27456/d.cnki.gyndu.2022.001896. | |
[24] | 袁鸣, 朱铭玮, 解志军, 等. 核磁共振技术在沼生栎种子失水过程中水分相态变化[J]. 林业科学, 2023, 59(11):42-48. |
YUAN M, ZHU M W, XIE Z J, et al. Changes of water phases during desiccation of Quercus palustris seeds by nuclear magnetic resonance[J]. Scientia Silvae Sinicae, 2023, 59(11):42-48.DOI: 10.11707/j.1001-7488.LYKX20220661. | |
[25] | 马小兰, 罗永红, 闫兴富, 等. 不同大小辽东栎种子的脱水敏感性[J]. 种子, 2019, 38(1):19-24. |
MA X L, LUO Y H, YAN X F, et al. The desiccation sensitivity of Quercus wutaishanica seeds of different size[J]. Seed, 2019, 38(1):19-24.DOI: 10.16590/j.cnki.1001-4705.2019.01.019. | |
[26] | CHEN Z X, LAN Q Y, ZHENG L, et al. Effects of dehydration and temperature on seed viability and antioxidative enzymes activities on three kinds of cultivars of Camellia sinensis[J]. Brazilian Journal of Botany, 2015, 38(3):497-504.DOI: 10.1007/s40415-015-0167-5. |
[27] | 申婵, 钟芙蓉, 黄玲, 等. 快速脱水对后熟黄连种子萌发及生理生化的影响[J]. 中药材, 2019, 42(4):720-724. |
SHEN C, ZHONG F R, HUANG L, et al. Effect of rapid dehydration on germination and physiological and biochemical characteristics of the ripened seeds of Coptis chinensis[J]. Journal of Chinese Medicinal Materials, 2019, 42(4):720-724.DOI: 10.13863/j.issn1001-4454.2019.04.003. | |
[28] | PLITTA-MICHALAK B P, RAMOS A A, PUPEL P, et al. Oxidative damage and DNA repair in desiccated recalcitrant embryonic axes of Acer pseudoplatanus L[J]. BMC Plant Biology, 2022, 22(1):40.DOI: 10.1186/s12870-021-03419-2. |
[29] | MA M Z, CHRISTENSEN M J, NAN Z B. Effects of the endophyte Epichloë festucae var.lolii of perennial ryegrass (Lolium perenne) on indicators of oxidative stress from pathogenic fungi during seed germination and seedling growth[J]. European Journal of Plant Pathology, 2015, 141(3):571-583.DOI: 10.1007/s10658-014-0563-x. |
[30] | JAMALOMIDI M, GHOLAMI M. Effect of desiccation on antioxidant enzymes activity of recalcitrant tea (Camellia sinensis L.) seeds[J]. International Research Journal of Applied and Basic Sciences, 2013, 4(12): 417-421. |
[31] | OBROUCHEVA N, SINKEVICH I, LITYAGINA S. Physiological aspects of seed recalcitrance:a case study on the tree Aesculus hippocastanum[J]. Tree Physiology, 2016, 36(9):1127-1150.DOI: 10.1093/treephys/tpw037. |
[32] | 杨舒贻, 陈晓阳, 惠文凯, 等. 逆境胁迫下植物抗氧化酶系统响应研究进展[J]. 福建农林大学学报(自然科学版), 2016, 45(5):481-489. |
YANG S Y, CHEN X Y, HUI W K, et al. Progress in responses of antioxidant enzyme systems in plant to environmental stresses[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2016, 45(5):481-489.DOI: 10.13323/j.cnki.j.fafu(nat.sci.).2016.05.001. | |
[33] | 张宏锦, 潘萌, 郭素娟. 油脂类与淀粉类种子的耐脱水特性比较[J]. 西北农林科技大学学报(自然科学版), 2020, 48(2):80-86. |
ZHANG H J, PAN M, GUO S J. Comparison of dehydration tolerance of oil and starch seeds[J]. Journal of Northwest A & F University (Natural Science Edition), 2020, 48(2):80-86.DOI: 10.13207/j.cnki.jnwafu.2020.02.010. | |
[34] | 庄珍, 史锋厚, 丁彦芬, 等. 香圆种子脱水耐性研究[J]. 江苏农业科学, 2015, 43(9):229-231. |
ZHUANG Z, SHI F H, DING Y F, et al. Study on dehydration tolerance of fragrant round seeds[J]. Jiangsu Agricultural Sciences, 2015, 43(9):229-231.DOI: 10.15889/j.issn.1002-1302.2015.09.075. | |
[35] | 李佳琦, 薛晓明, 高捍东. 桢楠种子脱水过程中的生理响应[J]. 南京林业大学学报(自然科学版), 2021, 45(3):130-136. |
LI J Q, XUE X M, GAO H D. Physiological responses of Phoebe zhennan seeds during dehydration[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2021, 45(3):130-136.DOI: 10.12302/j.issn.1000-2006.202002021. | |
[36] | 冯景, 沈永宝, 史锋厚. 银杏种子脱水敏感性的研究[J]. 南京林业大学学报(自然科学版), 2019, 43(6):193-200. |
FENG J, SHEN Y B, SHI F H. Study on desiccation sensitivity of Ginkgo biloba seeds[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2019, 43(6):193-200.DOI: 10.3969/j.issn.1000-2006.201808026. | |
[37] | SAHU B, SAHU A K, CHENNAREDDY S R, et al. Insights on germinability and desiccation tolerance in developing neem seeds (Azadirachta indica):role of AOS,antioxidative enzymes and dehydrin-like protein[J]. Plant Physiology and Biochemistry, 2017, 112:64-73.DOI: 10.1016/j.plaphy.2016.12.022. |
[38] | HUANG H, SONG S Q. Change in desiccation tolerance of maize embryos during development and germination at different water potential PEG-6000 in relation to oxidative process[J]. Plant Physiology and Biochemistry, 2013, 68:61-70.DOI: 10.1016/j.plaphy.2013.02.029. |
[39] | SMOLIKOVA G, LEONOVA T, VASHURINA N, et al. Desiccation tolerance as the basis of long-term seed viability[J]. International Journal of Molecular Sciences, 2020, 22(1): 101. DOI: 10.20944/preprints202011.0734.vl. |
[40] | PARKHEY S, NAITHANI S C, KESHAVKANT S. Protein metabolism during natural ageing in desiccating recalcitrant seeds of Shorea robusta[J]. Acta Physiologiae Plantarum, 2014, 36(7):1649-1659.DOI: 10.1007/s11738-014-1540-x. |
[41] | 陶月良, 朱诚. 顽拗性板栗种子成熟前后褐变与可溶性糖的关系[J]. 农业工程学报, 2003, 19(4):201-204. |
TAO Y L, ZHU C. Relationship between browning and soluble sugar of recalcitrant seeds of chestnut in front of and behind maturation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2003, 19(4):201-204.DOI: 10.3321/j.issn:1002-6819.2003.04.049. | |
[42] | KALEMBA E M, PUKACKA S. Changes in late embryogenesis abundant proteins and a small heat shock protein during storage of beech (Fagus sylvatica L.) seeds[J]. Environmental and Experimental Botany, 2008, 63(1/2/3):274-280.DOI: 10.1016/j.envexpbot.2007.12.011. |
[43] | 张新静. 桔梗种子脱水耐性及其保存技术研究[D]. 北京: 中国农业科学院, 2018. |
ZHANG X J. Study on the dehydration tolerance and preservation technology of Platycodon grandiflorum seeds[D]. Beijing: Chinese Academy of Agricultural Sciences, 2018. | |
[44] | SZABADOS L, SAVOURÉ A. Proline:a multifunctional amino acid[J]. Trends in Plant Science, 2010, 15(2):89-97.DOI: 10.1016/j.tplants.2009.11.009. |
[45] | REHMAN A U, BASHIR F, AYAYDIN F, et al. Proline is a quencher of singlet oxygen and superoxide both in in vitro systems and isolated thylakoids[J]. Physiologia Plantarum, 2021, 172(1):7-18.DOI: 10.1111/ppl.13265. |
[1] | 缪聪林, 刘亚敏, 姚虹宇, 刘玉民, 纪雨薇, 李峻安. 3种有机酸对铝毒下马尾松幼苗抗氧化系统调控效应评价[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 112-118. |
[2] | 马坛, 田野, 王书军, 李文昊, 段启英, 张庆源. 不同性别南方型黑杨无性系叶片对土壤短期间歇性干旱的生理响应[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 172-180. |
[3] | 赵晓龙, 沈家怡, 刘涛, 吴家胜, 胡渊渊. 当年和越年生香榧叶片的光合效率及抗氧化特性的季节性变化[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 45-50. |
[4] | 卜晓婷, 付威, 李淑娴, 徐志标, 彭大庆, 徐林桥. 幼化和外源激素对娜塔栎嫩枝扦插生根的影响及其生根解剖学观察[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 129-136. |
[5] | 刘相泉, 赵仁菲, 朱艳芳, 邓仕明, 李吉涛, 邓志军. 复羽叶栾树植冠种子库种子活力变化机制[J]. 南京林业大学学报(自然科学版), 2023, 47(2): 35-41. |
[6] | 李佳琦, 薛晓明, 高捍东. 桢楠种子脱水过程中的生理响应[J]. 南京林业大学学报(自然科学版), 2021, 45(3): 130-136. |
[7] | 石欣隆, 杨月琴, 薛娴, 刘伟, 宋程威, 郭丽丽, 侯小改. 壳寡糖对干旱胁迫下‘凤丹’幼苗生长及生理特性的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(2): 120-126. |
[8] | 冯景, 沈永宝, 史锋厚. 银杏种子脱水敏感性的研究[J]. 南京林业大学学报(自然科学版), 2019, 43(6): 193-200. |
[9] | 佘露露, 王伟娟, 宋静静, 卢存福, 陈玉珍. 低温驯化对西藏绵头雪莲愈伤组织抗冻性及抗氧化能力的影响[J]. 南京林业大学学报(自然科学版), 2019, 43(5): 181-186. |
[10] | 曹莉,王艮梅,续卫利,普慧梅,杨园. 镉污染土壤中添加外源有机物料对杨树苗期生长的影响[J]. 南京林业大学学报(自然科学版), 2018, 42(04): 68-74. |
[11] | 秦健,刘洋,方升佐,杨万霞,管玲玲,尚旭岚. 光质和光强对青钱柳生长和抗氧化酶活性的影响[J]. 南京林业大学学报(自然科学版), 2017, 41(04): 13-18. |
[12] | 茹广欣,刘小囡,朱秀红,张龙冲,王鋆瑞,周霜晴. 泡桐黄化突变体生理特性分析[J]. 南京林业大学学报(自然科学版), 2017, 41(04): 181-185. |
[13] | 刘小金,徐大平,杨曾奖,张宁南. 脱落酸对檀香幼苗生长、光合及叶片 抗氧化酶活性的影响[J]. 南京林业大学学报(自然科学版), 2016, 40(03): 57-62. |
[14] | 程淑娟,唐东芹,刘群录. 盐胁迫对两种忍冬属植物活性氧平衡的影响[J]. 南京林业大学学报(自然科学版), 2013, 37(01): 137-141. |
[15] | 张往祥,张晓燕,曹福亮,汪贵斌,岳具玺. 涝渍胁迫下3个树种幼苗生理特性的响应[J]. 南京林业大学学报(自然科学版), 2011, 35(05): 11-15. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||