南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (2): 95-102.doi: 10.12302/j.issn.1000-2006.202007050
吴叶娇1(), 高源1, 曹成亮1, 蒋瑀霁3, 闾连飞2, 吴文龙2, 蒋继宏1, 朱泓2,*(), 李荣鹏1,*()
收稿日期:
2020-07-05
接受日期:
2021-04-29
出版日期:
2022-03-30
发布日期:
2022-04-08
通讯作者:
朱泓,李荣鹏
基金资助:
WU Yejiao1(), GAO Yuan1, CAO Chengliang1, JIANG Yuji3, LYU Lianfei2, WU Wenlong2, JIANG Jihong1, ZHU Hong2,*(), LI Rongpeng1,*()
Received:
2020-07-05
Accepted:
2021-04-29
Online:
2022-03-30
Published:
2022-04-08
Contact:
ZHU Hong,LI Rongpeng
摘要:
【目的】研究不同品种兔眼蓝莓(Vaccinium ashei Reade,简称RB)对phoD(碱性磷酸酶基因)相关土壤解磷细菌群落组成的影响,阐明解磷细菌对土壤磷素的转化以及植物生长的意义。【方法】通过对12个兔眼蓝莓品种根际土壤中phoD进行高通量测序,分析phoD基因相关土壤解磷细菌群落的多样性及组成,解析根际解磷细菌与蓝莓品种以及土壤理化性质之间的相互作用关系。【结果】在12个兔眼蓝莓品种中,蓝莓‘森土里昂’(‘Centurion’, RB4)品种具有最高的群落多样性;蓝莓根际phoD基因相关土壤解磷细菌群落核心细菌群由α-变形菌纲根瘤菌目、红螺菌目、β-变形菌纲伯克氏菌目、γ-变形菌纲黄单胞菌目、海洋螺菌目、假单胞菌目和放线菌门链霉菌目组成;蓝莓根际phoD基因相关土壤解磷细菌群落可以分为RBⅠ、RBⅡ两组,其中RBⅠ组的α-变形菌纲细菌相对丰度显著高于RBⅡ组;土壤总磷(TP)和phoD基因相关土壤解磷细菌群落组成是速效磷(AP)的主要影响因素。【结论】蓝莓不同品种和土壤性质对根际phoD基因相关解磷细菌群落丰度有显著影响,而群落多样性则与对照无显著差异,这可为进一步阐明酸性土壤条件下植物和根际解磷细菌之间的共生关系提供有效的数据支持。
中图分类号:
吴叶娇,高源,曹成亮,等. 不同蓝莓品种根际phoD基因相关土壤解磷细菌群落结构分析[J]. 南京林业大学学报(自然科学版), 2022, 46(2): 95-102.
WU Yejiao, GAO Yuan, CAO Chengliang, JIANG Yuji, LYU Lianfei, WU Wenlong, JIANG Jihong, ZHU Hong, LI Rongpeng. Community structure of phoD phosphate solubilizing bacteria in rhizosphere soil of different blueberry cultivars[J].Journal of Nanjing Forestry University (Natural Science Edition), 2022, 46(2): 95-102.DOI: 10.12302/j.issn.1000-2006.202007050.
[1] | 来璐, 郝明德, 彭令发. 土壤磷素研究进展[J]. 水土保持研究, 2003, 10(1):65-67. |
LAI L, HAO M D, PENG L F. Development of researches on soil phosphorus[J]. Res Soil Water Conserv, 2003, 10(1):65-67. DOI: 10.3969/j.issn.1005-3409.2003.01.019.
doi: 10.3969/j.issn.1005-3409.2003.01.019 |
|
[2] |
TURNER B L, CHEESMAN A W, CONDRON L M, et al. Introduction to the special issue:developments in soil organic phosphorus cycling in natural and agricultural ecosystems[J]. Geoderma, 2015, 257/258:1-3. DOI: 10.1016/j.geoderma.2015.06.008.
doi: 10.1016/j.geoderma.2015.06.008 |
[3] |
CHEN Z X, MA S W, LIU L L. Studies on phosphorus solubilizing activity of a strain of phosphobacteria isolated from chestnut type soil in China[J]. Bioresour Technol, 2008, 99(14):6702-6707. DOI: 10.1016/j.biortech.2007.03.064.
doi: 10.1016/j.biortech.2007.03.064 |
[4] | 钟传青, 黄为一. 不同种类解磷微生物的溶磷效果及其磷酸酶活性的变化[J]. 土壤学报, 2005, 42(2):286-294. |
ZHONG C Q, HUANG W Y. Comparison in P-solubilizing effects between different P-solubilizing microbes and variation of activities of their phosphatases[J]. Acta Pedol Sin, 2005, 42(2):286-294. DOI: 10.3321/j.issn:0564-3929.2005.02.017.
doi: 10.3321/j.issn:0564-3929.2005.02.017 |
|
[5] | 赵小蓉, 林启美. 微生物解磷的研究进展[J]. 土壤肥料, 2001(3):7-11. |
ZHAO X R, LIN Q M. A review of phosphate-dissolving microorganisms[J]. Soils Fertil, 2001(3):7-11. DOI: 10.3969/j.issn.1673-6257.2001.03.002.
doi: 10.3969/j.issn.1673-6257.2001.03.002 |
|
[6] | 姜一, 步凡, 张超, 等. 土壤有机磷矿化研究进展[J]. 南京林业大学学报(自然科学版), 2014, 38(3):160-166. |
JIANG Y, BU F, ZHANG C, et al. Research advances on soil organic phosphorus mineralization[J]. J Nanjing For Univ (Nat Sci Ed), 2014, 38(3):160-166. DOI: 10.3969/j.issn.1000-2006.2014.03.031.
doi: 10.3969/j.issn.1000-2006.2014.03.031 |
|
[7] |
WEI X M, GE T D, ZHU Z K, et al. Expansion of rice enzymatic rhizosphere:temporal dynamics in response to phosphorus and cellulose application[J]. Plant Soil, 2019, 445(1/2):169-181. DOI: 10.1007/s11104-018-03902-0.
doi: 10.1007/s11104-018-03902-0 |
[8] |
SARDANS J, PEÑUELAS J, OGAYA R. Experimental drought reduced acid and alkaline phosphatase activity and increased organic extractable P in soil in a Quercus ilex mediterranean forest[J]. Eur J Soil Biol, 2008, 44(5/6):509-520. DOI: 10.1016/j.ejsobi.2008.09.011.
doi: 10.1016/j.ejsobi.2008.09.011 |
[9] |
MISE K, FUJITA K, KUNITO T, et al. Phosphorus-mineralizing communities reflect nutrient-rich characteristics in Japanese arable andisols[J]. Microbes Environ, 2018, 33(3):282-289. DOI: 10.1264/jsme2. ME18043.
doi: 10.1264/jsme2. ME18043 |
[10] |
EIVAZI F, TABATABAI M A. Phosphatases in soils[J]. Soil Biol Biochem, 1977, 9(3):167-172. DOI: 10.1016/0038-0717(77)90070-0.
doi: 10.1016/0038-0717(77)90070-0 |
[11] |
FRANKENBERGER W T Jr, JOHANSON J B. Effect of pH on enzyme stability in soils[J]. Soil Biol Biochem, 1982, 14(5):433-437. DOI: 10.1016/0038-0717(82)90101-8.
doi: 10.1016/0038-0717(82)90101-8 |
[12] |
KUNITO T, TOBITANI T, MORO H, et al. Phosphorus limitation in microorganisms leads to high phosphomonoesterase activity in acid forest soils[J]. Pedobiologia, 2012, 55(5):263-270. DOI: 10.1016/j.pedobi.2012.05.002.
doi: 10.1016/j.pedobi.2012.05.002 |
[13] |
NANNIPIERI P, GIAGNONI L, LANDI L, et al. Role of phosphatase enzymes in soil[M]// Soil biology. Berlin,Heidelberg: Springer, 2010:215-243. DOI: 10.1007/978-3-642-15271-9_9.
doi: 10.1007/978-3-642-15271-9_9 |
[14] | 王荣贵. 册亨县油茶林地土壤碱性磷酸酶活性分析[J]. 江西林业科技, 2013, 41(3):24-25,28. |
WANG R G. Analysis of soil alkaline phosphatase’s activity of Camellia oleifera stand in Ceheng County,Guizhou Province[J]. Jiangxi For Sci Technol, 2013, 41(3):24-25,28. DOI: 10.16259/j.cnki.36-1342/s.2013.03.008.
doi: 10.16259/j.cnki.36-1342/s.2013.03.008 |
|
[15] |
GOMEZ P F, INGRAM L O. Cloning,sequencing and characterization of the alkaline phosphatase gene (phoD) from Zymomonas mobilis[J]. FEMS Microbiol Lett, 1995, 125(2/3):237-245. DOI: 10.1111/j.1574-6968.1995.tb07364.x.
doi: 10.1111/j.1574-6968.1995.tb07364.x. |
[16] |
TAN H, BARRET M, MOOIJ M J, et al. Long-term phosphorus fertilisation increased the diversity of the total bacterial community and the phoD phosphorus mineraliser group in pasture soils[J]. Biol Fertil Soils, 2013, 49(6):661-672. DOI: 10.1007/s00374-012-0755-5.
doi: 10.1007/s00374-012-0755-5 |
[17] |
MAJUMDAR A, GHATAK A, GHOSH R K. Identification of the gene for the monomeric alkaline phosphatase of Vibrio cholerae serogroup O1 strain[J]. Gene, 2005, 344:251-258. DOI: 10.1016/j.gene.2004.11.005.
doi: 10.1016/j.gene.2004.11.005 |
[18] |
RAGOT S A, KERTESZ M A, BÜNEMANN E K. phoD alkaline phosphatase gene diversity in soil[J]. Appl Environ Microbiol, 2015, 81(20):7281-7289. DOI: 10.1128/AEM.01823-15.
doi: 10.1128/AEM.01823-15 |
[19] |
RYAN P R, DELHAIZE E, JONES D L. Function and mechanism of organic anion exudation from plant roots[J]. Annu Rev Plant Physiol Plant Mol Biol, 2001, 52:527-560. DOI: 10.1146/annurev.arplant.52.1.527.
doi: 10.1146/annurev.arplant.52.1.527 |
[20] |
BERENDSEN R L, PIETERSE C M J, BAKKER P A H M. The rhizosphere microbiome and plant health[J]. Trends Plant Sci, 2012, 17(8):478-486. DOI: 10.1016/j.tplants.2012.04.001.
doi: 10.1016/j.tplants.2012.04.001 |
[21] |
BOKULICH N A, THORNGATE J H, RICHARDSON P M, et al. Microbial biogeography of wine grapes is conditioned by cultivar,vintage,and climate[J]. Proc Natl Acad Sci USA, 2014, 111(1):E139-E148. DOI: 10.1073/pnas.1317377110.
doi: 10.1073/pnas.1317377110 |
[22] |
LUNDBERG D S, LEBEIS S L, PAREDES S H, et al. Defining the core Arabidopsis thaliana root microbiome[J]. Nature, 2012, 488(7409):86-90. DOI: 10.1038/nature11237.
doi: 10.1038/nature11237 |
[23] |
AIRA M, GÓMEZ-BRANDÓN M, LAZCANO C, et al. Plant genotype strongly modifies the structure and growth of maize rhizosphere microbial communities[J]. Soil Biol Biochem, 2010, 42(12):2276-2281. DOI: 10.1016/j.soilbio.2010.08.029.
doi: 10.1016/j.soilbio.2010.08.029 |
[24] |
JIANG Y J, LI S Z, LI R P, et al. Plant cultivars imprint the rhizosphere bacterial community composition and association networks[J]. Soil Biol Biochem, 2017, 109:145-155. DOI: 10.1016/j.soilbio.2017.02.010.
doi: 10.1016/j.soilbio.2017.02.010 |
[25] |
BERG G, SMALLA K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere[J]. FEMS Microbiol Ecol, 2009, 68(1):1-13. DOI: 10.1111/j.1574-6941.2009.00654.x.
doi: 10.1111/j.1574-6941.2009.00654.x. |
[26] | 李岩, 何学敏, 杨晓东, 等. 不同生境黑果枸杞根际与非根际土壤微生物群落多样性[J]. 生态学报, 2018, 38(17):5983-5995. |
LI Y, HE X M, YANG X D, et al. The microbial community diversity of the rhizosphere and bulk soils of Lycium ruthenicum in different habitats[J]. Chin J Plant Ecol, 2018, 38(17):5983-5995. DOI: 10.5846/stxb201711082002.
doi: 10.5846/stxb201711082002 |
|
[27] | 刘向蕾, 朱友银. 我国蓝莓栽培技术进展[J]. 现代园艺, 2017(14):14-16. |
LIU X L, ZHU Y Y. Development of blueberry cultivation techniques in China[J]. Xiandai Hortic, 2017(14):14-16. DOI: 10.14051/j.cnki.xdyy.2017.14.009.
doi: 10.14051/j.cnki.xdyy.2017.14.009 |
|
[28] | 邓岚, 王文华, 董顺文, 等. 拉萨露地蓝莓引种栽培管理技术[J]. 西藏科技, 2017(10):5-7. |
DENG L, WANG W H, DONG S W, et al. Introduction, cultivation and management techniques of blueberries in Lhasa open field[J]. Tibet Sci Technol, 2017(10):5-7. | |
[29] | 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. |
LU R K. Analysis method of soil and agricultural chemistry[M]. Beijing: China Agriculture Scientech Press, 2000. | |
[30] |
SAKURAI M, WASAKI J, TOMIZAWA Y, et al. Analysis of bacterial communities on alkaline phosphatase genes in soil supplied with organic matter[J]. Soil Sci Plant Nutr, 2008, 54(1):62-71. DOI: 10.1111/j.1747-0765.2007.00210.x.
doi: 10.1111/j.1747-0765.2007.00210.x. |
[31] |
CAPORASO J G, KUCZYNSKI J, STOMBAUGH J, et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nat Methods, 2010, 7(5):335-336. DOI: 10.1038/nmeth.f.303.
doi: 10.1038/nmeth.f.303 |
[32] | 王国兵, 郭娇娇, 曹国华, 等. 不同施肥模式对杨树人工林土壤微生物生物量C、N、P的影响[J]. 南京林业大学学报(自然科学版), 2016, 40(5):9-13. |
WANG G B, GUO J J, CAO G H, et al. Effects of different fertilization regimes on soil microbial biomass C,N,P under poplar plantation[J]. J Nanjing For Univ (Nat Sci Ed), 2016, 40(5):9-13. DOI: 10.3969/j.issn.1000-2006.2016.05.002.
doi: 10.3969/j.issn.1000-2006.2016.05.002 |
|
[33] |
LI M, HE P, GUO X L, et al. Fifteen-year no tillage of a Mollisol with residue retention indirectly affects topsoil bacterial community by altering soil properties[J]. Soil Tillage Res, 2021, 205:104804. DOI: 10.1016/j.still.2020.104804.
doi: 10.1016/j.still.2020.104804 |
[34] |
HARDOIM P R, ANDREOTE F D, REINHOLD-HUREK B, et al. Rice root-associated bacteria:insights into community structures across 10 cultivars[J]. FEMS Microbiol Ecol, 2011, 77(1):154-164. DOI: 10.1111/j.1574-6941.2011.01092.x.
doi: 10.1111/j.1574-6941.2011.01092.x. |
[35] |
ZHONG Y J, YANG Y Q, LIU P, et al. Genotype and Rhizobium inoculation modulate the assembly of soybean rhizobacterial communities[J]. Plant Cell Environ, 2019, 42(6):2028-2044. DOI: 10.1111/pce.13519.
doi: 10.1111/pce.13519 |
[36] |
PEIFFER J A, SPOR A, KOREN O, et al. Diversity and heritability of the maize rhizosphere microbiome under field conditions[J]. Proc Natl Acad Sci USA, 2013, 110(16):6548-6553. DOI: 10.1073/pnas.1302837110.
doi: 10.1073/pnas.1302837110 |
[37] |
RAGOT S A, HUGUENIN-ELIE O, KERTESZ M A, et al. Total and active microbial communities and phoD as affected by phosphate depletion and pH in soil[J]. Plant Soil, 2016, 408(1/2):15-30. DOI: 10.1007/s11104-016-2902-5.
doi: 10.1007/s11104-016-2902-5 |
[38] |
LUO G W, LING N, NANNIPIERI P, et al. Long-term fertilisation regimes affect the composition of the alkaline phosphomonoesterase encoding microbial community of a vertisol and its derivative soil fractions[J]. Biol Fertil Soils, 2017, 53(4):375-388. DOI: 10.1007/s00374-017-1183-3.
doi: 10.1007/s00374-017-1183-3 |
[39] |
RFAKI A, ZENNOUHI O, ALIYAT F Z, et al. Isolation,selection and characterization of root-associated rock phosphate solubilizing bacteria in Moroccan wheat (Triticum aestivum L.)[J]. Geomicrobiol J, 2020, 37(3):230-241. DOI: 10.1080/01490451.2019.1694106.
doi: 10.1080/01490451.2019.1694106 |
[40] | CONDRON L, TURNER B L, CADE-MENUN B, et al. Chemistry and dynamics of soil organic phosphorus[C]// SIMS T,ANDREW N S. Agronomy monographs. New York: American Society of Agronomy Inc, 2005. |
[41] |
GILES C D, HSU P C, RICHARDSON A E, et al. Plant assimilation of phosphorus from an insoluble organic form is improved by addition of an organic anion producing Pseudomonas sp.[J]. Soil Biol Biochem, 2014, 68:263-269. DOI: 10.1016/j.soilbio.2013.09.026.
doi: 10.1016/j.soilbio.2013.09.026 |
[42] |
ALORI E T, GLICK B R, BABALOLA O O. Microbial phosphorus solubilization and its potential for use in sustainable agriculture[J]. Front Microbiol, 2017, 8:971. DOI: 10.3389/fmicb.2017.00971.
doi: 10.3389/fmicb.2017.00971 |
[43] | 赵青云, 邢诒彰, 王辉, 等. 解磷细菌Burkholderia的分离鉴定及对香草兰生长和P吸收的影响[J]. 热带作物学报, 2018, 39(10):1913-1919. |
ZHAO Q Y, XING Y Z, WANG H, et al. Isolation and identification of phosphate-solubilizing bacteria and their effects on the growth of Vanilla (Vanilla planifolia) and absorption of phosphorus[J]. Chin J Trop Crops, 2018, 39(10):1913-1919. DOI: 10.3969/j.issn.1000-2561.2018.10.005.
doi: 10.3969/j.issn.1000-2561.2018.10.005 |
|
[44] | 齐飞飞, 夏觅真, 唐欣昀, 等. 黄单胞菌属(Xanthomonas)P2126菌株luxAB基因标记及其生理活性的研究[J]. 安徽农学通报, 2007, 13(10):31-32. |
QI F F, XIA M Z, TANG X Y, et al. Research on the LuxAB gene marker of Xanthomonas P2126 strain and its physiological activity[J]. Anhui Agric Sci Bull, 2007, 13(10):31-32. DOI: 10.16377/j.cnki.issn1007-7731.2007.10.014.
doi: 10.16377/j.cnki.issn1007-7731.2007.10.014 |
|
[45] | 阎逊初, 张国伟, 邢桂香, 等. 链霉菌属中解磷解钾的三个新种[J]. 微生物学报, 1979, 19(2):122-125. |
YAN X C, ZHANG G W, XING G X, et al. Three new species of Streptomyces decomposing phosphopotassic fertilizers[J]. Acta Microbiol Sin, 1979, 19(2):122-125. DOI: 10.13343/j.cnki.wsxb.1979.02.002.
doi: 10.13343/j.cnki.wsxb.1979.02.002 |
|
[46] |
APEL A K, SOLA-LANDA A, RODRÍGUEZ-GARCÍA A, et al. Phosphate control of phoA,phoC and phoD gene expression in Streptomyces coelicolor reveals significant differences in binding of PhoP to their promoter regions[J]. Microbiology (Reading), 2007, 153(Pt 10):3527-3537. DOI: 10.1099/mic.0.2007/007070-0.
doi: 10.1099/mic.0.2007/007070-0 |
[47] |
BERGKEMPER F, SCHÖLER A, ENGEL M, et al. Phosphorus depletion in forest soils shapes bacterial communities towards phosphorus recycling systems[J]. Environ Microbiol, 2016, 18(8):2767. DOI: 10.1111/1462-2920.13442.
doi: 10.1111/1462-2920.13442 |
[1] | 宋泽君, 李培培, 袁斓方, 郭小兰, 王德炉. 土壤含水率对蓝莓叶片生理及果实品质的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(3): 147-156. |
[2] | 郭丽丽, 张晨洁, 王菲, 沈佳佳, 张凯月, 何丽霞, 郭琪, 侯小改. 牡丹野生种根际土壤细菌群落特征分析[J]. 南京林业大学学报(自然科学版), 2023, 47(3): 45-55. |
[3] | 王阳, 王伟, 姜静, 顾宸瑞, 杨蕴力. 转基因小黑杨根际土壤微生物群落特征研究[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 199-208. |
[4] | 陈佳, 缑晶毅, 赵祺, 韩庆庆, 李慧萍, 姚丹, 张金林. 梭梭根际根瘤菌对紫花苜蓿生长及耐盐性的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(6): 99-110. |
[5] | 王爱斌, 宋慧芳, 张流洋, 张明, 杨诗雯, 张凌云. 生物肥和菌肥对蓝莓苗生长及土壤养分的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(6): 63-70. |
[6] | 周思婕, 王平, 张敏, 陈舒展, 许雯, 朱丽婷, 何销勤, 龚书锐. 大气酸沉降对马尾松幼苗根系生理特性的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(4): 111-118. |
[7] | 王小敏, 吴文龙, 闾连飞, 张春红, 杨海燕, 黄正金, 赵慧芳, 李维林. 蓝莓新品种‘寨选4号’[J]. 南京林业大学学报(自然科学版), 2020, 44(3): 225-226. |
[8] | 杨海燕, 吴文龙, 闾连飞, 张春红, 黄正金, 王小敏, 赵慧芳, 李维林. 蓝莓新品种‘寨选7号’[J]. 南京林业大学学报(自然科学版), 2020, 44(3): 227-228. |
[9] | 王邵军. “植物-土壤”相互反馈的关键生态学问题:格局、过程与机制[J]. 南京林业大学学报(自然科学版), 2020, 44(2): 1-9. |
[10] | 夏晓雨, 王凤娟, 符群, 张娜, 郭庆启. 蓝莓果汁饮料原花青素的热稳定性及降解动力学模型[J]. 南京林业大学学报(自然科学版), 2019, 43(5): 89-95. |
[11] | 姚蓓,赵慧芳,吴文龙,李维林. 蓝莓果实多酚提取物的抗炎活性研究[J]. 南京林业大学学报(自然科学版), 2019, 43(03): 152-156. |
[12] | 杨海燕,董珊珊,闾连飞,黄正金,吴文龙,李维林. 三个高丛蓝莓品种在南京地区的田间生长表现[J]. 南京林业大学学报(自然科学版), 2019, 43(03): 157-162. |
[13] | 赵慧芳,闾连飞,姚蓓,吴文龙,李维林. 蓝莓‘寨选’品系在南京地区的生长与结实表现[J]. 南京林业大学学报(自然科学版), 2019, 43(03): 163-168. |
[14] | 董珊珊,李宁冉,杨海燕,吴文龙,闾连飞,李维林. 蓝莓根系对土壤锰胁迫的生理响应[J]. 南京林业大学学报(自然科学版), 2019, 43(03): 169-174. |
[15] | 叶钰倩,赵家豪,刘畅,关庆伟. 间伐对马尾松人工林根际土壤氮含量及酶活性的影响[J]. 南京林业大学学报(自然科学版), 2018, 42(03): 193-198. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||