南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (6): 90-98.doi: 10.12302/j.issn.1000-2006.202007069
收稿日期:
2020-07-31
接受日期:
2021-01-13
出版日期:
2021-11-30
发布日期:
2021-12-02
通讯作者:
叶建仁
基金资助:
YANG Yi1,2(), LIU Bo3, YE Jianren1,*(), SU Luhui3
Received:
2020-07-31
Accepted:
2021-01-13
Online:
2021-11-30
Published:
2021-12-02
Contact:
YE Jianren
摘要: 目的 水杉赤枯病为寄主主导性病害,生态调控措施是其最佳防治策略之一。营林技术是生态调控防治病害的基础性措施。探讨营林调控技术措施对水杉赤枯病防治的效果,为赤枯病的生态防治提供指导。方法 选择上海浦东新区绿带中的水杉纯林和混交林,采用间伐抽稀、人工透光疏枝、林间清理、施肥、松土、纯林改混交林等单因子营林措施分别开展调控试验,选择水杉纯林开展多因子营林措施随机区组综合调控试验,分析营林措施对赤枯病的防治效果。结果 间伐抽稀、及时清理病落叶和枯死树桩以及松土,可使赤枯病病情指数有不同程度下降;轻度修剪对降低发病指数有一定作用,中度修剪对病情指数基本没有作用,重度修剪后病情指数不降反升。仅施用氮肥会使发病率、病情指数上升,而施用磷钾肥则可明显降低发病率,同时施用氮磷钾肥后病情虽有下降但不明显。进行纯林混交改造对病情的降低可起到较为明显的作用。综合营林随机区组试验得到影响感病指数减退率的主次因素依次为林相改造>林间卫生>施肥>抚育,最优综合营林措施组合为林地清扫1次+轻修剪通风+松土深翻+除草+施过磷酸钙和氯化钾+纯林改混交。结论 合理的营林措施有助于控制水杉赤枯病的发生与危害,而综合营林措施对赤枯病具有协同生态调控作用。
中图分类号:
杨意,刘波,叶建仁,等. 水杉赤枯病综合营林生态控制技术研究[J]. 南京林业大学学报(自然科学版), 2021, 45(6): 90-98.
YANG Yi, LIU Bo, YE Jianren, SU Luhui. A study on the ecological control of red blight of Metasequoia glyptostroboides by integrated forest management[J].Journal of Nanjing Forestry University (Natural Science Edition), 2021, 45(6): 90-98.DOI: 10.12302/j.issn.1000-2006.202007069.
表2
营林措施对水杉赤枯病发病程度的影响"
营林措施 forest management | 处理 treatment | 纯林 pure forest | 混交林 mixed forest | ||
---|---|---|---|---|---|
平均 发病率/% average incidence rate | 平均 病情指数 average disease index | 平均 发病率/% average incidence rate | 平均 病情指数 average disease index | ||
间伐抽稀 thinning and tree density adjustment | 未间伐前(CK) | 75.90 | 45.4 | 35.60 | 27.8 |
间伐 | 65.30 | 38.4 | 27.60 | 21.6 | |
间伐+药剂 | 19.70 | 20.5 | 15.40 | 12.6 | |
修剪 pruning | 未修剪前(CK2) | 58.40 | 38.3 | 34.40 | 23.2 |
轻修 | 52.70 | 34.4 | 28.90 | 22.8 | |
中修 | 60.30 | 38.9 | 33.80 | 25.1 | |
重修 | 64.30 | 42.1 | 35.70 | 26.9 | |
轻修+药剂 | 18.40 | 20.2 | 13.50 | 12.8 | |
林地清理 cleaning | 未清理前(CK3) | 75.30 | 46.2 | 48.90 | 27.7 |
彻底清理 | 43.50 | 31.6 | 36.60 | 21.4 | |
简单清理 | 69.80 | 42.6 | 45.40 | 26.9 | |
彻清+药剂 | 13.20 | 18.3 | 11.10 | 10.6 | |
施肥 fertilizer | 未施肥前(CK4) | 82.50 | 36.1 | 45.60 | 25.5 |
施氮肥 | 88.50 | 38.4 | 48.60 | 28.5 | |
施磷钾肥 | 59.80 | 25.9 | 29.40 | 17.6 | |
施氮磷钾肥 | 66.10 | 33.9 | 44.80 | 23.6 | |
氮肥+药剂 | 29.30 | 26.5 | 14.10 | 13.1 | |
磷钾肥+药剂 | 20.80 | 22.3 | 10.40 | 9.5 | |
氮磷钾肥+药剂 | 21.70 | 19.8 | 9.80 | 8.7 | |
松土 loosning soil | 未松土前(CK5) before the loosening soil | 83.40 | 39.5 | 47.60 | 26.3 |
1次 | 79.50 | 34.4 | 43.60 | 24.3 | |
2次 | 57.30 | 22.8 | 31.70 | 18.6 | |
松土+药剂 | 15.10 | 19.6 | 10.10 | 8.9 |
表4
随机区组综合调控正交试验"
试验号 No. | 处理 treatment | 感病指数 减退率/% decline rate of disease index | 减退率平方根 反正弦 arcsinx of square root of decline rate | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | |||||||||
1 | 1 | 1 | 1 | 1 | 10.30 | 18.72 | ||||||
2 | 1 | 2 | 2 | 2 | 39.90 | 39.17 | ||||||
3 | 1 | 3 | 3 | 3 | 70.40 | 56.98 | ||||||
4 | 2 | 1 | 2 | 3 | 73.60 | 59.08 | ||||||
5 | 2 | 2 | 3 | 1 | 74.40 | 43.51 | ||||||
6 | 2 | 3 | 1 | 2 | 77.30 | 61.55 | ||||||
7 | 3 | 1 | 3 | 2 | 65.60 | 54.09 | ||||||
8 | 3 | 2 | 1 | 3 | 80.40 | 63.72 | ||||||
9 | 3 | 3 | 2 | 1 | 29.60 | 32.96 | ||||||
K1 | 114.87 | 131.89 | 143.99 | 95.19 | ||||||||
K2 | 164.14 | 146.4 | 131.2 | 154.81 | ||||||||
K3 | 150.77 | 151.49 | 154.58 | 179.78 | ||||||||
k1 | 38.29 | 43.96 | 48.00 | 31.73 | ||||||||
k2 | 54.70 | 48.80 | 43.740 | 51.60 | ||||||||
k3 | 50.26 | 50.50 | 51.53 | 59.93 | ||||||||
R | 16.41 | 6.54 | 7.79 | 28.20 |
[1] | 李传道. 森林病害流行与治理[M]. 北京: 中国林业出版社, 1995:1-10. |
LI C D. Epidemic and management of forest diseases[M]. Beijing:China Forestry publishing House, 1995:1-10. | |
[2] | 叶建仁, 贺伟. 林木病理学[M]. 3版.北京: 中国林业出版社, 2011:5-14. |
YE J R, HE W. Forest Pathology[M].3rd Ed. Beijing: China Forestry Publishing House, 2011:5-14. | |
[3] |
GARBELOTTO M, GONTHIER P. Biology,epidemiology,and control of Heterobasidion Species worldwide[J]. Annu Rev Phytopathol, 2013, 51(1):39-59.DOI: 10.1146/annurev-phyto-082712-102225.
doi: 10.1146/annurev-phyto-082712-102225 |
[4] |
GONTHIER P, THOR M. Annosus root and butt rots[M]//Infectious forest diseases.Wallingford:CABI, 2013:128-158.DOI: 10.1079/9781780640402.0128.
doi: 10.1079/9781780640402.0128 |
[5] |
GUYOT V, CASTAGNEYROL B, VIALATTE A, et al. Tree diversity reduces pest damage in mature forests across Europe[J]. Biol Lett, 2016, 12(4):20151037.DOI: 10.1098/rsbl.2015.1037.
doi: 10.1098/rsbl.2015.1037 |
[6] |
WAINHOUSE D. Ecological methods in forest pest management[M]. London: Oxford University Press, 2004. DOI: 10.1093/acprof:oso/9780198505648.001.0001.
doi: 10.1093/acprof:oso/9780198505648.001.0001 |
[7] |
NULL. Principles of forest pathology[J]. Choice Rev Online, 1996, 33(11):33-62.DOI: 10.5860/choice.33-62.
doi: 10.5860/choice.33-62 |
[8] | QUINE C P, COUTTS M P, GARDINER B A, et al. Forests and wind: management to minimise damage[C]//Forestry Commission Bulletin. London: HMSO, 1995:1-27. |
[9] |
LITTELL J S, MCKENZIE D, PETERSON D L, et al. Climate and wildfire area burned in western US ecoprovinces,1916-2003[J]. Ecol Appl, 2009, 19(4):1003-1021.DOI: 10.1890/07-1183.1.
doi: 10.1890/07-1183.1 |
[10] | 束庆龙, 徐建敏, 肖斌, 等. 土壤肥力对板栗枝干病害的影响[J]. 应用生态学报, 2003, 14(10):1617-1621. |
SHU Q L, XU J M, XIAO B, et al. Effect of soil fertility on chestnut stem diseases[J]. Chin J Appl Ecol, 2003, 14(10):1617-1621. | |
[11] |
SHOWLER A. Selected abiotic and biotic environmental stress factors affecting two economically important sugarcane stalk boring pests in the United States[J]. Agronomy, 2016, 6(1):10.DOI: 10.3390/agronomy6010010.
doi: 10.3390/agronomy6010010 |
[12] |
VAN AGTMAAL M, STRAATHOF A L, TERMORSHUIZEN A, et al. Volatile-mediated suppression of plant pathogens is related to soil properties and microbial community composition[J]. Soil Biol Biochem, 2018, 117:164-174.DOI: 10.1016/j.soilbio.2017.11.015.
doi: 10.1016/j.soilbio.2017.11.015 |
[13] | JACTEL H, BRANCO M, GONZALEZ-OLABARRIA J R, et al. Forest stands management and vulnerability to biotic and abiotic hazards[R]. Joensuu: European Forest Institute, 2011. |
[14] |
AOKI C F, COOK M, DUNN J, et al. Old pests in new places: effects of stand structure and forest type on susceptibility to a bark beetle on the edge of its native range[J]. For Ecol Manag, 2018, 419/420:206-219.DOI: 10.1016/j.foreco.2018.03.009.
doi: 10.1016/j.foreco.2018.03.009 |
[15] |
OMDAL D W, SHAW C G, JACOBI W R. Evaluation of three machines to remove Armillaria-and annosum-infected stumps[J]. West J Appl For, 2001, 16(1):22-25.DOI: 10.1093/wjaf/16.1.22.
doi: 10.1093/wjaf/16.1.22 |
[16] |
KRAH F S, SEIBOLD S, BRANDL R, et al. Independent effects of host and environment on the diversity of wood-inhabiting fungi[J]. J Ecol, 2018, 106(4):1428-1442.DOI: 10.1111/1365-2745.12939.
doi: 10.1111/1365-2745.12939 |
[17] |
TELFORD A, CAVERS S, ENNOS R A, et al. Can we protect forests by harnessing variation in resistance to pests and pathogens?[J]. Forestry (Lond), 2015, 88(1):3-12.DOI: 10.1093/forestry/cpu012.
doi: 10.1093/forestry/cpu012 |
[18] | 沈国舫. 森林培育学[M]. 北京: 中国林业出版社, 2001. |
SHEN G F. Forest silviculture[M]. Beijing: China Forestry Publishing House, 2001. | |
[19] | 匙明强, 王焱, 叶建仁, 等. 水杉赤枯病病原形态及分子鉴定[J]. 南京林业大学学报(自然科学版), 2013, 37(5):75-80. |
CHI M Q, WANG Y, YE J R, et al. Morphological and molecular identification of Metasequoia red blight[J]. J Nanjing For Univ (Nat Sci Ed), 2013, 37(5):75-80. DOI: 10.3969/j.issn.1000-2006.2013.05.015.
doi: 10.3969/j.issn.1000-2006.2013.05.015 |
|
[20] |
OLIVIER M D, ROBERT S, FOURNIER R A. Response of sugar maple (Acer saccharum Marsh.) tree crown structure to competition in pure versus mixed stands[J]. For Ecol Manag, 2016, 374:20-32.DOI: 10.1016/j.foreco.2016.04.047.
doi: 10.1016/j.foreco.2016.04.047 |
[21] |
GONTHIER P, ANSELMI N, CAPRETTI P, et al. An integrated approach to control the introduced forest pathogen Heterobasidion irregulare in Europe[J]. Forestry, 2014, 87(4):471-481.DOI: 10.1093/forestry/cpu015.
doi: 10.1093/forestry/cpu015 |
[22] |
LUQUE J, ELENA G, GARCIA-FIGUERES F, et al. Natural infections of pruning wounds by fungal trunk pathogens in mature grapevines in Catalonia (northeast Spain)[J]. Aust J Grape Wine Res, 2014, 20(1):134-143.DOI: 10.1111/ajgw.12046.
doi: 10.1111/ajgw.12046 |
[23] |
PRETZSCH H, DIELER J. Evidence of variant intra-and interspecific scaling of tree crown structure and relevance for allometric theory[J]. Oecologia, 2012, 169(3):637-649.DOI: 10.1007/s00442-011-2240-5.
doi: 10.1007/s00442-011-2240-5 |
[24] | 马元丹, 江洪, 余树全, 等. 不同起源时间的植物叶凋落物在中亚热带的分解特性[J]. 生态学报, 2009, 29(10):5237-5245. |
MA Y D, JIANG H, YU S Q, et al. Leaf litter decomposition of plants with different origin time in the mid-subtropical China[J]. Acta Ecol Sin, 2009, 29(10):5237-5245.DOI: 10.3321/j.issn:1000-0933.2009.10.008.
doi: 10.3321/j.issn:1000-0933.2009.10.008 |
|
[25] |
GARCÍA-GUZMÁN G, BENÍTEZ-MALVIDO J. Effect of litter on the incidence of leaf-fungal pathogens and herbivory in seedlings of the tropical tree Nectandra ambigens[J]. J Trop Ecol, 2003, 19(2):171-177.DOI: 10.1017/s0266467403003195.
doi: 10.1017/s0266467403003195 |
[26] |
SAYER E J. Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems[J]. Biol Rev Camb Philos Soc, 2006, 81(1):1-31.DOI: 10.1017/s1464793105006846.
doi: 10.1017/s1464793105006846 |
[27] |
GIORDANO L, GONTHIER P, LIONE G, et al. The saprobic and fruiting abilities of the exotic forest pathogen Heterobasidion irregulare may explain its invasiveness[J]. Biol Invasions, 2014, 16(4):803-814.DOI: 10.1007/s10530-013-0538-4.
doi: 10.1007/s10530-013-0538-4 |
[28] | KORHONEN K, CAPRETTI P, KARJALAINEN R, et al. Distribution of Heterobasidion annosum intersterility groups in Europe [C]//WOODWARD S, STENLID J, KARJALAINEN R, et al. Heterobasidion annosum. Wallingford: CABI, 1998: 93-104. |
[29] |
GIBBS J N, GREIG B J W, PRATT J E. Fomes root rot inany given site. Although some of the slightly infected thetford forest, east Anglia: past, present and future trees in crown condition[J]. Forestry, 2002, 75:191-202.DOI: 10.1093/forestry/75.2.191.
doi: 10.1093/forestry/75.2.191 |
[30] |
VAN DER W A, KLEIN G P, DE HOLLANDER M, et al. Fungal diversity and potential tree pathogens in decaying logs and stumps[J]. For Ecol Manag, 2017, 406:266-273.DOI: 10.1016/j.foreco.2017.08.018.
doi: 10.1016/j.foreco.2017.08.018 |
[31] |
HERMS D A. Effects of fertilization on insect resistance of woody ornamental plants: reassessing an entrenched paradigm[J]. Environ Entomol, 2002, 31(6):923-933.DOI: 10.1603/0046-225X-31.6.923.
doi: 10.1603/0046-225X-31.6.923 |
[32] |
MUR L A J, SIMPSON C, KUMARI A, et al. Moving nitrogen to the centre of plant defence against pathogens[J]. Ann Bot, 2017, 119(5):703-709.DOI: 10.1093/aob/mcw179.
doi: 10.1093/aob/mcw179 |
[33] |
TAVERNIER V, CADIOU S, PAGEAU K, et al. The plant nitrogen mobilization promoted by Colletotrichum lindemuthianum in Phaseolus leaves depends on fungus pathogenicity[J]. J Exp Bot, 2007, 58(12):3351-3360.DOI: 10.1093/jxb/erm182.
doi: 10.1093/jxb/erm182 |
[34] |
MITCHELL C E, REICH P B, TILMAN D, et al. Effects of elevated CO2,nitrogen deposition,and decreased species diversity on foliar fungal plant disease[J]. Glob Change Biol, 2003, 9(3):438-451.DOI: 10.1046/j.1365-2486.2003.00602.x.
doi: 10.1046/j.1365-2486.2003.00602.x |
[35] |
LÓPEZ-UPTON J, WHITE T L, HUBER D A. Species differences in early growth and rust incidence of loblolly and slash pine[J]. For Ecol Manag, 2000, 132(2/3):211-222.DOI: 10.1016/S0378-1127(99)00232-7.
doi: 10.1016/S0378-1127(99)00232-7 |
[36] |
DAVIS J L, ARMENGAUD P, LARSON T R, et al. Contrasting nutrient-disease relationships:Potassium gradients in barley leaves have opposite effects on two fungal pathogens with different sensitivities to jasmonic acid[J]. Plant Cell Environ, 2018, 41(10):2357-2372.DOI: 10.1111/pce.13350.
doi: 10.1111/pce.13350 |
[37] | 谷尘平, 姜高明, 王福仲, 等. 水杉苗期对氮素营养需求的研究[J]. 湖北林业科技, 2004, 33(2):19-22. |
GU C P, JIANG G M, WANG F Z, et al. Study on requirement for nitrogen nutrition by seedling of Metasequoia glyptostroboides[J]. Hubei For Sci Technol, 2004, 33(2):19-22.DOI: 10.3969/j.issn.1004-3020.2004.02.005.
doi: 10.3969/j.issn.1004-3020.2004.02.005 |
|
[38] | 姚继周. 水杉人工林细根生产和周转及对氮沉降的响应[D].南京:南京林业大学,2016:58-60. |
YAO J Z.Fine root production and turnover and the response to nitrogen deposition in Metasequoia glyptostroboides plantation[D]. Nanjing:Nanjing Forestry University, 2016:58-60. | |
[39] |
HARREWIJN P. Potassium and plant health[J]. Neth J Plant Pathol, 1979, 85(2):82.DOI: 10.1007/BF02349770.
doi: 10.1007/BF02349770 |
[40] | PRABHU A S, FAGERIA N K, HUBER D M, et al. Potassium nutrition and plant diseases//DATNOFF L E, ELMER W H, HUBER D M. Mineral nutrition and plant disease[G]. Saint Paul: The American Phytopathological Society Press, 2007: 57-78. |
[41] |
AMTMANN A, TROUFFLARD S, ARMENGAUD P. The effect of potassium nutrition on pest and disease resistance in plants[J]. Physiol Plant, 2008, 133(4):682-691.DOI: 10.1111/j.1399-3054.2008.01075.x.
doi: 10.1111/j.1399-3054.2008.01075.x |
[42] |
KOZLOWSKI T T. Soil compaction and growth of woody plants[J]. Scand J For Res, 1999, 14(6):596-619.DOI: 10.1080/02827589908540825.
doi: 10.1080/02827589908540825 |
[43] |
ALAMEDA D, VILLAR R. Moderate soil compaction:implications on growth and architecture in seedlings of 17 woody plant species[J]. Soil Tillage Res, 2009, 103(2):325-331.DOI: 10.1016/j.still.2008.10.029.
doi: 10.1016/j.still.2008.10.029 |
[44] | 王邵军. “植物-土壤” 相互反馈的关键生态学问题:格局、过程与机制[J]. 南京林业大学学报(自然科学版), 2020, 44(2):1-9. |
WANG S J. Key ecological issues in plant-soil feedback: pattern,process and mechanism[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(2):1-9.DOI: 10.3969/j.issn.1000-2006.202001013.
doi: 10.3969/j.issn.1000-2006.202001013 |
|
[45] |
XIAO Y S, PENG F T, DANG Z Q, et al. Influence of rhizosphere ventilation on soil nutrient status,root architecture and the growth of young peach trees[J]. Soil Sci Plant Nutr, 2015, 61(5):775-787.DOI: 10.1080/00380768.2015.1045404.
doi: 10.1080/00380768.2015.1045404 |
[46] |
PRETZSCH H. Canopy space filling and tree crown morphology in mixed-species stands compared with monocultures[J]. For Ecol Manag, 2014, 327:251-264.DOI: 10.1016/j.foreco.2014.04.027.
doi: 10.1016/j.foreco.2014.04.027 |
[47] | 惠昊, 关庆伟, 王亚茹, 等. 不同森林经营模式对土壤氮含量及酶活性的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(4):151-158. |
HUI H, GUAN Q W, WANG Y R, et al. Effects of different forest management modes on soil nitrogen content and enzyme activity[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(4):151-158. | |
[48] |
JACTEL H, BROCKERHOFF E G. Tree diversity reduces herbivory by forest insects[J]. Ecol Lett, 2007, 10(9):835-848.DOI: 10.1111/j.1461-0248.2007.01073.x.
doi: 10.1111/j.1461-0248.2007.01073.x |
[49] |
CASTAGNEYROL B, RÉGOLINI M, JACTEL H. Tree species composition rather than diversity triggers associational resistance to the pine processionary moth[J]. Basic Appl Ecol, 2014, 15(6):516-523.DOI: 10.1016/j.baae.2014.06.008.
doi: 10.1016/j.baae.2014.06.008 |
[50] |
PAUTASSO M, HOLDENRIEDER O, STENLID J. Susceptibility to fungal pathogens of forests differing in tree diversity[M]//Forest Diversity and Function.Berlin/Heidelberg:Springer-Verlag, 2005:263-289. DOI: 10.1007/3-540-26599-6_13.
doi: 10.1007/3-540-26599-6_13 |
[51] |
KORICHEVA J, VEHVILÄINEN H, RIIHIMÄKI J, et al. Diversification of tree stands as a means to manage pests and diseases in boreal forests: myth or reality?[J]. Can J For Res, 2006, 36(2):324-336.DOI: 10.1139/x05-172.
doi: 10.1139/x05-172 |
[52] |
ROOT R B. Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea)[J]. Ecol Monogr, 1973, 43(1):95-124.DOI: 10.2307/1942161.
doi: 10.2307/1942161 |
[53] |
JACTEL H, BROCKERHOFF E, DUELLI P. A test of the biodiversity-stability theory: meta-analysis of tree species diversity effects on insect pest infestations,and re-examination of responsible factors[J]. For Divers Funct, 2005:235-262.DOI: 10.1007/3-540-26599-6_12.
doi: 10.1007/3-540-26599-6_12 |
[54] |
VAN HALDER I, CASTAGNEYROL B, ORDÓÑEZ C, et al. Tree diversity reduces pine infestation by mistletoe[J]. For Ecol Manag, 2019, 449:117470.DOI: 10.1016/j.foreco.2019.117470.
doi: 10.1016/j.foreco.2019.117470 |
[55] |
KARAMI J, KAVOSI M R, BABANEZHAD M, et al. Integrated management of the charcoal disease by silviculture, chemical and biological methods in forest parks[J]. J Sustain For, 2018, 37(5):429-444.DOI: 10.1080/10549811.2017.1416642.
doi: 10.1080/10549811.2017.1416642 |
[1] | 方炎明. 郑万钧先生与树木学[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 2-13. |
[2] | 袁在翔,金雪梅,翟凯燕,陈斌,关庆伟,徐建峰. 常见绿化树种对土壤碳氮垂直分布及有机碳储量的影响[J]. 南京林业大学学报(自然科学版), 2018, 42(03): 153-158. |
[3] | 杨鑫,张高洁,姚继周,于水强,方月丰. 水杉人工林细根解剖结构和菌根侵染研究[J]. 南京林业大学学报(自然科学版), 2016, 40(06): 97-102. |
[4] | 卢东升,卢帅,潘中超,李佳佳. 水杉内生真菌生物多样性与生态分布[J]. 南京林业大学学报(自然科学版), 2013, 37(06): 33-36. |
[5] | 匙明强,王焱,叶建仁*,张岳峰. 水杉赤枯病病原形态及分子鉴定[J]. 南京林业大学学报(自然科学版), 2013, 37(05): 75-80. |
[6] | 樊斌琦,苏鹏,郝德君,王焱,张岳峰. 刘氏短须螨危害对水杉生理生化物质及挥发物的影响[J]. 南京林业大学学报(自然科学版), 2012, 36(03): 28-32. |
[7] | 孔雨光,,王因花,张金池,储冬生,张东海,王如岩,张小庆. 苏北泥质海岸水杉林地土壤的异养呼吸[J]. 南京林业大学学报(自然科学版), 2010, 34(01): 15-18. |
[8] | 徐福元1,夏春胜2,刘云鹏1,李玉巧1,薛同良4,张亚川4,蔡云河4,张成华3. 复合经营与释放天敌控制杨树天牛的林间试验[J]. 南京林业大学学报(自然科学版), 2008, 32(03): 103-106. |
[9] | 蒋萍1,2,吴小芹1,叶建仁1*,盛江梅1. 松树两种病原茵拮抗微生物的筛选[J]. 南京林业大学学报(自然科学版), 2007, 31(01): 59-62. |
[10] | 卫春;陈建群;张鹏飞;张闲;陈岗;张纪林. 复合农林系统中水杉他感作用的生物测定[J]. 南京林业大学学报(自然科学版), 1999, 23(04): 85-88. |
[11] | 周林;马以秀;张宏忠;蒋建刚;朱国生. 水杉人工林抚育间伐效果比较及其经济效益分析[J]. 南京林业大学学报(自然科学版), 1997, 21(02): 93-96. |
[12] | 方升佐,蔡顺章,陈建洪,杨波,丁学富,宋兆元. 水杉人工林生物量及其制浆性能的研究[J]. 南京林业大学学报(自然科学版), 1995, 19(04): 51-56. |
[13] | 朱克恭. 水杉赤枯病病原初探[J]. 南京林业大学学报(自然科学版), 1987, 11(03): 29-34. |
[14] | 汤庚国. 对《水杉区系及其植物地理学意义》一文的订正[J]. 南京林业大学学报(自然科学版), 1987, 11(01): 88-104. |
[15] | 王佩卿;余俊;李民栋. 水杉木材半乳糖基-葡萄甘露聚糖的结构研究[J]. 南京林业大学学报(自然科学版), 1986, 10(02): 66-73. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||