水杉赤枯病综合营林生态控制技术研究

杨意, 刘波, 叶建仁, 苏禄晖

南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (6) : 90-98.

PDF(1598 KB)
PDF(1598 KB)
南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (6) : 90-98. DOI: 10.12302/j.issn.1000-2006.202007069
研究论文

水杉赤枯病综合营林生态控制技术研究

作者信息 +

A study on the ecological control of red blight of Metasequoia glyptostroboides by integrated forest management

Author information +
文章历史 +

摘要

目的 水杉赤枯病为寄主主导性病害,生态调控措施是其最佳防治策略之一。营林技术是生态调控防治病害的基础性措施。探讨营林调控技术措施对水杉赤枯病防治的效果,为赤枯病的生态防治提供指导。方法 选择上海浦东新区绿带中的水杉纯林和混交林,采用间伐抽稀、人工透光疏枝、林间清理、施肥、松土、纯林改混交林等单因子营林措施分别开展调控试验,选择水杉纯林开展多因子营林措施随机区组综合调控试验,分析营林措施对赤枯病的防治效果。结果 间伐抽稀、及时清理病落叶和枯死树桩以及松土,可使赤枯病病情指数有不同程度下降;轻度修剪对降低发病指数有一定作用,中度修剪对病情指数基本没有作用,重度修剪后病情指数不降反升。仅施用氮肥会使发病率、病情指数上升,而施用磷钾肥则可明显降低发病率,同时施用氮磷钾肥后病情虽有下降但不明显。进行纯林混交改造对病情的降低可起到较为明显的作用。综合营林随机区组试验得到影响感病指数减退率的主次因素依次为林相改造>林间卫生>施肥>抚育,最优综合营林措施组合为林地清扫1次+轻修剪通风+松土深翻+除草+施过磷酸钙和氯化钾+纯林改混交。结论 合理的营林措施有助于控制水杉赤枯病的发生与危害,而综合营林措施对赤枯病具有协同生态调控作用。

Abstract

Red blight of Metasequoia glyptostroboides is a typical host-dominated disease. The ecological regulation is one of the best control strategies for this disease, and forestry technology is a basic and fundamental control measure of ecological regulation.Therefore, studying the forest management and control measures could scientifically improve the control strategies for red blight of M. glyptostroboides.【Method】Pure and mixed M. glyptostroboides forests in the green belt were selected, and single factor forest management measures such as thinning, pruning, cleaning, fertilization, soil loosen and the transformation of the pure forest into the mixed forest were used to carry out experiments respectively. In addition, the pure M. glyptostroboides forest was selected to carry out the randomized block-group comprehensive control test of multi factor forest management measures. The control effects of forest management measures on red blight were calculated and analyzed.【Result】 This study showed that the disease index of red blight of M. glyptostroboides decreased to different degrees by thinning and tree density adjustment or the timely clearing of fallen leaves and dead tree stumps or loose soil. Mild pruning had a certain effect on reducing the disease index, but the disease index did not change after moderate pruning. After severe pruning, the disease index of red blight increased, and the incidence and disease index of red blight increased to different degrees after applying nitrogen fertilizer alone. The incidence and disease index were significantly reduced after the application of phosphate and potassium fertilizers. After N, P and K fertilizers were applied, the incidence and disease index decreased but were not significant. After the transformation of the M. glyptostroboides pure forest into the mixed forest, the disease index was significantly reduced. According to the results of the randomized block design of the integrated silvicultural trial, the primary and secondary relationship of the influence on the decline rate of the disease index was: forest transformation > forest health > fertilization > tending. The optimal combination level of integrated silvicultural measures was forest cleaning once + light pruning ventilation + loosening the soil and digging deep + weeding + fertilizing with calcium phosphate and potassium chloride + the transformation of the pure forest into the mixed forest. 【Conclusion】 The reasonable silvicultural measures can control the occurrence and harm of red blight in M. glyptostroboides, and the integrated forest management can be applied to collaborative ecological control effects.

关键词

水杉 / 赤枯病 / 营林防治 / 生态控制

Key words

Metasequoia glyptostroboides / red blight of M. glyptostroboides / silvicultural control / ecological regulation

引用本文

导出引用
杨意, 刘波, 叶建仁, . 水杉赤枯病综合营林生态控制技术研究[J]. 南京林业大学学报(自然科学版). 2021, 45(6): 90-98 https://doi.org/10.12302/j.issn.1000-2006.202007069
YANG Yi, LIU Bo, YE Jianren, et al. A study on the ecological control of red blight of Metasequoia glyptostroboides by integrated forest management[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2021, 45(6): 90-98 https://doi.org/10.12302/j.issn.1000-2006.202007069
中图分类号: S763.15   

参考文献

[1]
李传道. 森林病害流行与治理[M]. 北京: 中国林业出版社, 1995:1-10.
LI C D. Epidemic and management of forest diseases[M]. Beijing:China Forestry publishing House, 1995:1-10.
[2]
叶建仁, 贺伟. 林木病理学[M]. 3版.北京: 中国林业出版社, 2011:5-14.
YE J R, HE W. Forest Pathology[M].3rd Ed. Beijing: China Forestry Publishing House, 2011:5-14.
[3]
GARBELOTTO M, GONTHIER P. Biology,epidemiology,and control of Heterobasidion Species worldwide[J]. Annu Rev Phytopathol, 2013, 51(1):39-59.DOI: 10.1146/annurev-phyto-082712-102225.
[4]
GONTHIER P, THOR M. Annosus root and butt rots[M]//Infectious forest diseases.Wallingford:CABI, 2013:128-158.DOI: 10.1079/9781780640402.0128.
[5]
GUYOT V, CASTAGNEYROL B, VIALATTE A, et al. Tree diversity reduces pest damage in mature forests across Europe[J]. Biol Lett, 2016, 12(4):20151037.DOI: 10.1098/rsbl.2015.1037.
[6]
WAINHOUSE D. Ecological methods in forest pest management[M]. London: Oxford University Press, 2004. DOI: 10.1093/acprof:oso/9780198505648.001.0001.
[7]
NULL. Principles of forest pathology[J]. Choice Rev Online, 1996, 33(11):33-62.DOI: 10.5860/choice.33-62.
[8]
QUINE C P, COUTTS M P, GARDINER B A, et al. Forests and wind: management to minimise damage[C]//Forestry Commission Bulletin. London: HMSO, 1995:1-27.
[9]
LITTELL J S, MCKENZIE D, PETERSON D L, et al. Climate and wildfire area burned in western US ecoprovinces,1916-2003[J]. Ecol Appl, 2009, 19(4):1003-1021.DOI: 10.1890/07-1183.1.
[10]
束庆龙, 徐建敏, 肖斌, 等. 土壤肥力对板栗枝干病害的影响[J]. 应用生态学报, 2003, 14(10):1617-1621.
SHU Q L, XU J M, XIAO B, et al. Effect of soil fertility on chestnut stem diseases[J]. Chin J Appl Ecol, 2003, 14(10):1617-1621.
[11]
SHOWLER A. Selected abiotic and biotic environmental stress factors affecting two economically important sugarcane stalk boring pests in the United States[J]. Agronomy, 2016, 6(1):10.DOI: 10.3390/agronomy6010010.
[12]
VAN AGTMAAL M, STRAATHOF A L, TERMORSHUIZEN A, et al. Volatile-mediated suppression of plant pathogens is related to soil properties and microbial community composition[J]. Soil Biol Biochem, 2018, 117:164-174.DOI: 10.1016/j.soilbio.2017.11.015.
[13]
JACTEL H, BRANCO M, GONZALEZ-OLABARRIA J R, et al. Forest stands management and vulnerability to biotic and abiotic hazards[R]. Joensuu: European Forest Institute, 2011.
[14]
AOKI C F, COOK M, DUNN J, et al. Old pests in new places: effects of stand structure and forest type on susceptibility to a bark beetle on the edge of its native range[J]. For Ecol Manag, 2018, 419/420:206-219.DOI: 10.1016/j.foreco.2018.03.009.
[15]
OMDAL D W, SHAW C G, JACOBI W R. Evaluation of three machines to remove Armillaria-and annosum-infected stumps[J]. West J Appl For, 2001, 16(1):22-25.DOI: 10.1093/wjaf/16.1.22.
[16]
KRAH F S, SEIBOLD S, BRANDL R, et al. Independent effects of host and environment on the diversity of wood-inhabiting fungi[J]. J Ecol, 2018, 106(4):1428-1442.DOI: 10.1111/1365-2745.12939.
[17]
TELFORD A, CAVERS S, ENNOS R A, et al. Can we protect forests by harnessing variation in resistance to pests and pathogens?[J]. Forestry (Lond), 2015, 88(1):3-12.DOI: 10.1093/forestry/cpu012.
[18]
沈国舫. 森林培育学[M]. 北京: 中国林业出版社, 2001.
SHEN G F. Forest silviculture[M]. Beijing: China Forestry Publishing House, 2001.
[19]
匙明强, 王焱, 叶建仁, 等. 水杉赤枯病病原形态及分子鉴定[J]. 南京林业大学学报(自然科学版), 2013, 37(5):75-80.
CHI M Q, WANG Y, YE J R, et al. Morphological and molecular identification of Metasequoia red blight[J]. J Nanjing For Univ (Nat Sci Ed), 2013, 37(5):75-80. DOI: 10.3969/j.issn.1000-2006.2013.05.015.
[20]
OLIVIER M D, ROBERT S, FOURNIER R A. Response of sugar maple (Acer saccharum Marsh.) tree crown structure to competition in pure versus mixed stands[J]. For Ecol Manag, 2016, 374:20-32.DOI: 10.1016/j.foreco.2016.04.047.
[21]
GONTHIER P, ANSELMI N, CAPRETTI P, et al. An integrated approach to control the introduced forest pathogen Heterobasidion irregulare in Europe[J]. Forestry, 2014, 87(4):471-481.DOI: 10.1093/forestry/cpu015.
[22]
LUQUE J, ELENA G, GARCIA-FIGUERES F, et al. Natural infections of pruning wounds by fungal trunk pathogens in mature grapevines in Catalonia (northeast Spain)[J]. Aust J Grape Wine Res, 2014, 20(1):134-143.DOI: 10.1111/ajgw.12046.
[23]
PRETZSCH H, DIELER J. Evidence of variant intra-and interspecific scaling of tree crown structure and relevance for allometric theory[J]. Oecologia, 2012, 169(3):637-649.DOI: 10.1007/s00442-011-2240-5.
[24]
马元丹, 江洪, 余树全, 等. 不同起源时间的植物叶凋落物在中亚热带的分解特性[J]. 生态学报, 2009, 29(10):5237-5245.
MA Y D, JIANG H, YU S Q, et al. Leaf litter decomposition of plants with different origin time in the mid-subtropical China[J]. Acta Ecol Sin, 2009, 29(10):5237-5245.DOI: 10.3321/j.issn:1000-0933.2009.10.008.
[25]
GARCÍA-GUZMÁN G, BENÍTEZ-MALVIDO J. Effect of litter on the incidence of leaf-fungal pathogens and herbivory in seedlings of the tropical tree Nectandra ambigens[J]. J Trop Ecol, 2003, 19(2):171-177.DOI: 10.1017/s0266467403003195.
[26]
SAYER E J. Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems[J]. Biol Rev Camb Philos Soc, 2006, 81(1):1-31.DOI: 10.1017/s1464793105006846.
[27]
GIORDANO L, GONTHIER P, LIONE G, et al. The saprobic and fruiting abilities of the exotic forest pathogen Heterobasidion irregulare may explain its invasiveness[J]. Biol Invasions, 2014, 16(4):803-814.DOI: 10.1007/s10530-013-0538-4.
[28]
KORHONEN K, CAPRETTI P, KARJALAINEN R, et al. Distribution of Heterobasidion annosum intersterility groups in Europe [C]//WOODWARD S, STENLID J, KARJALAINEN R, et al. Heterobasidion annosum. Wallingford: CABI, 1998: 93-104.
[29]
GIBBS J N, GREIG B J W, PRATT J E. Fomes root rot inany given site. Although some of the slightly infected thetford forest, east Anglia: past, present and future trees in crown condition[J]. Forestry, 2002, 75:191-202.DOI: 10.1093/forestry/75.2.191.
[30]
VAN DER W A, KLEIN G P, DE HOLLANDER M, et al. Fungal diversity and potential tree pathogens in decaying logs and stumps[J]. For Ecol Manag, 2017, 406:266-273.DOI: 10.1016/j.foreco.2017.08.018.
[31]
HERMS D A. Effects of fertilization on insect resistance of woody ornamental plants: reassessing an entrenched paradigm[J]. Environ Entomol, 2002, 31(6):923-933.DOI: 10.1603/0046-225X-31.6.923.
[32]
MUR L A J, SIMPSON C, KUMARI A, et al. Moving nitrogen to the centre of plant defence against pathogens[J]. Ann Bot, 2017, 119(5):703-709.DOI: 10.1093/aob/mcw179.
[33]
TAVERNIER V, CADIOU S, PAGEAU K, et al. The plant nitrogen mobilization promoted by Colletotrichum lindemuthianum in Phaseolus leaves depends on fungus pathogenicity[J]. J Exp Bot, 2007, 58(12):3351-3360.DOI: 10.1093/jxb/erm182.
[34]
MITCHELL C E, REICH P B, TILMAN D, et al. Effects of elevated CO2,nitrogen deposition,and decreased species diversity on foliar fungal plant disease[J]. Glob Change Biol, 2003, 9(3):438-451.DOI: 10.1046/j.1365-2486.2003.00602.x.
[35]
LÓPEZ-UPTON J, WHITE T L, HUBER D A. Species differences in early growth and rust incidence of loblolly and slash pine[J]. For Ecol Manag, 2000, 132(2/3):211-222.DOI: 10.1016/S0378-1127(99)00232-7.
[36]
DAVIS J L, ARMENGAUD P, LARSON T R, et al. Contrasting nutrient-disease relationships:Potassium gradients in barley leaves have opposite effects on two fungal pathogens with different sensitivities to jasmonic acid[J]. Plant Cell Environ, 2018, 41(10):2357-2372.DOI: 10.1111/pce.13350.
[37]
谷尘平, 姜高明, 王福仲, 等. 水杉苗期对氮素营养需求的研究[J]. 湖北林业科技, 2004, 33(2):19-22.
GU C P, JIANG G M, WANG F Z, et al. Study on requirement for nitrogen nutrition by seedling of Metasequoia glyptostroboides[J]. Hubei For Sci Technol, 2004, 33(2):19-22.DOI: 10.3969/j.issn.1004-3020.2004.02.005.
[38]
姚继周. 水杉人工林细根生产和周转及对氮沉降的响应[D].南京:南京林业大学,2016:58-60.
YAO J Z. Fine root production and turnover and the response to nitrogen deposition in Metasequoia glyptostroboides plantation[D]. Nanjing:Nanjing Forestry University, 2016:58-60.
[39]
HARREWIJN P. Potassium and plant health[J]. Neth J Plant Pathol, 1979, 85(2):82.DOI: 10.1007/BF02349770.
[40]
PRABHU A S, FAGERIA N K, HUBER D M, et al. Potassium nutrition and plant diseases//DATNOFF L E, ELMER W H, HUBER D M. Mineral nutrition and plant disease[G]. Saint Paul: The American Phytopathological Society Press, 2007: 57-78.
[41]
AMTMANN A, TROUFFLARD S, ARMENGAUD P. The effect of potassium nutrition on pest and disease resistance in plants[J]. Physiol Plant, 2008, 133(4):682-691.DOI: 10.1111/j.1399-3054.2008.01075.x.
[42]
KOZLOWSKI T T. Soil compaction and growth of woody plants[J]. Scand J For Res, 1999, 14(6):596-619.DOI: 10.1080/02827589908540825.
[43]
ALAMEDA D, VILLAR R. Moderate soil compaction:implications on growth and architecture in seedlings of 17 woody plant species[J]. Soil Tillage Res, 2009, 103(2):325-331.DOI: 10.1016/j.still.2008.10.029.
[44]
王邵军. “植物-土壤” 相互反馈的关键生态学问题:格局、过程与机制[J]. 南京林业大学学报(自然科学版), 2020, 44(2):1-9.
WANG S J. Key ecological issues in plant-soil feedback: pattern,process and mechanism[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(2):1-9.DOI: 10.3969/j.issn.1000-2006.202001013.
[45]
XIAO Y S, PENG F T, DANG Z Q, et al. Influence of rhizosphere ventilation on soil nutrient status,root architecture and the growth of young peach trees[J]. Soil Sci Plant Nutr, 2015, 61(5):775-787.DOI: 10.1080/00380768.2015.1045404.
[46]
PRETZSCH H. Canopy space filling and tree crown morphology in mixed-species stands compared with monocultures[J]. For Ecol Manag, 2014, 327:251-264.DOI: 10.1016/j.foreco.2014.04.027.
[47]
惠昊, 关庆伟, 王亚茹, 等. 不同森林经营模式对土壤氮含量及酶活性的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(4):151-158.
HUI H, GUAN Q W, WANG Y R, et al. Effects of different forest management modes on soil nitrogen content and enzyme activity[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(4):151-158.
[48]
JACTEL H, BROCKERHOFF E G. Tree diversity reduces herbivory by forest insects[J]. Ecol Lett, 2007, 10(9):835-848.DOI: 10.1111/j.1461-0248.2007.01073.x.
[49]
CASTAGNEYROL B, RÉGOLINI M, JACTEL H. Tree species composition rather than diversity triggers associational resistance to the pine processionary moth[J]. Basic Appl Ecol, 2014, 15(6):516-523.DOI: 10.1016/j.baae.2014.06.008.
[50]
PAUTASSO M, HOLDENRIEDER O, STENLID J. Susceptibility to fungal pathogens of forests differing in tree diversity[M]//Forest Diversity and Function.Berlin/Heidelberg:Springer-Verlag, 2005:263-289. DOI: 10.1007/3-540-26599-6_13.
[51]
KORICHEVA J, VEHVILÄINEN H, RIIHIMÄKI J, et al. Diversification of tree stands as a means to manage pests and diseases in boreal forests: myth or reality?[J]. Can J For Res, 2006, 36(2):324-336.DOI: 10.1139/x05-172.
[52]
ROOT R B. Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea)[J]. Ecol Monogr, 1973, 43(1):95-124.DOI: 10.2307/1942161.
[53]
JACTEL H, BROCKERHOFF E, DUELLI P. A test of the biodiversity-stability theory: meta-analysis of tree species diversity effects on insect pest infestations,and re-examination of responsible factors[J]. For Divers Funct, 2005:235-262.DOI: 10.1007/3-540-26599-6_12.
[54]
VAN HALDER I, CASTAGNEYROL B, ORDÓÑEZ C, et al. Tree diversity reduces pine infestation by mistletoe[J]. For Ecol Manag, 2019, 449:117470.DOI: 10.1016/j.foreco.2019.117470.
[55]
KARAMI J, KAVOSI M R, BABANEZHAD M, et al. Integrated management of the charcoal disease by silviculture, chemical and biological methods in forest parks[J]. J Sustain For, 2018, 37(5):429-444.DOI: 10.1080/10549811.2017.1416642.

基金

国家林业局林业公益性行业科研专项项目(201304404)

编辑: 吴祝华

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
PDF(1598 KB)

Accesses

Citation

Detail

段落导航
相关文章

/