物候变化对落叶松人工林降雨分配过程中钾和钠离子迁移的影响

盛后财, 姚月锋, 蔡体久, 郭娜, 琚存勇

南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (6) : 143-150.

PDF(1651 KB)
PDF(1651 KB)
南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (6) : 143-150. DOI: 10.12302/j.issn.1000-2006.202102012
研究论文

物候变化对落叶松人工林降雨分配过程中钾和钠离子迁移的影响

作者信息 +

Effects of phenoseason on transfer of potassium and sodium ions in the process of rainfall redistribution in larch (Larix gmelinii) plantations

Author information +
文章历史 +

摘要

目的 森林冠层导致的穿透雨和树干茎流中离子通量的季节变化,能够影响森林生态系统生物地球化学循环,对物候变化明显的温带落叶林的影响更为突出。探究不同物候期(展叶期、盛叶期和落叶期)森林水化学过程,深入了解森林生态系统养分元素循环过程,为温带落叶林生物地球化学循环提供基础数据。方法 以东北林业大学城市林业示范基地内落叶松人工林为研究对象,在观测样地的中心位置十字交叉布设13个直径20 cm自制雨量筒,并选择5株落叶松安装树干茎流收集器,同时在林外布置1台翻斗式雨量计和3个自制雨量筒。在前期观察期(2015年5月1日—10月31日)每次降雨事件后,对林外降雨、穿透雨和树干茎流进行观测、取样,水样过滤酸化处理后用火焰原子吸收分光光度计测定Na+和K+质量浓度,探索冠层的物候变化对降雨分配过程中Na+和K+的质量浓度和净输入量的影响。结果 整个观测期间,林外降雨中Na+、K+的质量浓度分别为0.45 和1.89 mg/L,穿透雨中分别为0.44 和2.48 mg/L,树干茎流中分别为1.98和18.63 mg/L;大气降雨中Na+质量浓度在落叶期最高,盛叶期最低,K+质量浓度则在落叶期最高,展叶期最低;各时期穿透雨中Na+和K+质量浓度大小均为落叶期>盛叶期>展叶期;树干茎流中Na+和K+质量浓度大小均为展叶期>盛叶期>落叶期;生长季内林冠对降雨中Na+的截留量为0.252 kg/hm2,其中展叶期和落叶期的截留量分别为0.143和0.193 kg/hm2,截留率分别为30.63%和48.22%,盛叶期则表现为淋溶,淋溶量为0.083 kg/hm2;生长季内降雨对林冠中K+的淋溶量为0.903 kg/hm2,其中展叶期和盛叶期的淋溶量分别为0.999和0.157 kg/hm2,落叶期则为截留,截留量为0.254 kg/hm2,截留率为20.25%。结论 大气降雨经过森林冠层后离子质量浓度发生明显改变,且不同物候期、不同离子的变化强度不同。生长季内,兴安落叶松林对Na+总体表现为截留作用,对K+总体表现为淋溶作用。即落叶松叶片的物候变化能够影响大气降雨中Na+和K+的迁移。研究结果可为进一步探明我国温带森林生态系统伴随水文过程的养分循环过程及促进可持续经营管理提供借鉴。

Abstract

【Objective】 The seasonal variations in ionic fluxes in throughfall and stemflow resulting from washoff and leaching by forest canopy indicate significant processes affecting the biogeochemical cycling of forested ecosystems, particularly in temperate deciduous forests with distinct phenological seasons. Previous studies on the water chemistry of forest ecosystems have been focused on the growing season as a time scale to discuss the changes in element fluxes, but ignored the influence of leaf phenology changes on water chemistry during the growing season. Therefore, our objective is to determine the impacts of phenological changes on the water chemistry of forest ecosystems and to better understand the nutrient element cycle process of temperate deciduous forest ecosystems.【Method】 In this study, we selected a Larix gmelinii plantation in the Northeast Forestry University Urban Forestry Demonstration Base as the research subject. Thirteen self-made rain gauges with a diameter of 20 cm were laid across the center of the observation plot, and five L. gmelinii trees were selected to install the stemflow collectors. Simultaneously, a tipping bucket rain gauge and three self-made rain gauges were arranged outside the forest. We measured and sampled in situ the solution of bulk precipitation, throughfall, and stemflow after each rainfall event from May 1 to October 30, 2015. After filtering and acidification of the water sample, the concentrations of Na + and K+ were measured with a flame atomic absorption spectrophotometer to explore the role of the canopy at different phenological stages (leaf expanding stage, full leaf stage, and senesced leaf stage) on the concentrations and net inputs of Na+ and K+ in the process of rainfall distribution.【Result】 Throughout the observation period, the concentrations of Na+ and K+ in rainfall were 0.45 and 1.89 mg/L, in throughfall were 0.44 and 2.48 mg/L, and in stemflow were 1.98 and 18.63 mg/L, respectively. The highest and lowest Na+ concentrations in the rainwater occurred at the senesced and full leaf stages, respectively. Meanwhile, higher K+ concentration in rainwater was also found at the senesced leaf stage, and the lowest concentration at the leaf expanding stage. In the throughfall, both Na+ and K+ concentrations were in the order of senesced leaf stage > full leaf stage > leaf expanding stage, and in the stemflow, the order was leaf expanding stage > full leaf stage > senesced leaf stage. During the whole growing season, the canopy intercepted Na + with the values of 0.252 kg/hm2, and it intercepted both in the leaf expanding stage and senesced leaf stage, but showed leaching during the full leaf stage. The interceptions of Na+ were 0.143 and 0.193 kg/hm2, with interception rates of 30.63% and 48.22% at the leaf expanding stage and senesced leaf stage, respectively, and the leaching flux of Na+ was 0.083 kg/hm2. In contrast, the leaching flux of K+ was 0.903 kg/hm2 from the canopy due to rainfall during the growing season, with fluxes of 0.999 and 0.157 kg/hm2 at the leaf expanding stage and full leaf stage, respectively, and the interception was 0.254 kg/hm2 at the senesced leaf stage, with an interception rate of 20.25%. In conclusion, the redistribution of Na+ and K+ in the rainfall affected by the larch plantation canopy varied considerably with phenological stages. 【Conclusion】 The ion concentration in bulk precipitation changed significantly after passing through the forest canopy, and the change intensity differed according to the phenological stages and the ions. Throughout the observation period, the L. gmelini forest exhibited an interception effect on Na +, but showed a leaching effect on K+. In other words, the leaf phenology of L. gmelini affects the transfer of Na + and K+ in rainfall water. The results of this study can provide a reference for further understanding the nutrient cycling process associated with hydrological processes and its sustainable management in temperate forest ecosystems in China.

关键词

城市森林 / 物候期 / 穿透雨 / 树干茎流 / 水化学 / 金属元素 / 养分输入

Key words

urban forest / phenological stage / throughfall / stemflow / water chemistry / metal element / nutrient input

引用本文

导出引用
盛后财, 姚月锋, 蔡体久, . 物候变化对落叶松人工林降雨分配过程中钾和钠离子迁移的影响[J]. 南京林业大学学报(自然科学版). 2021, 45(6): 143-150 https://doi.org/10.12302/j.issn.1000-2006.202102012
SHENG Houcai, YAO Yuefeng, CAI Tijiu, et al. Effects of phenoseason on transfer of potassium and sodium ions in the process of rainfall redistribution in larch (Larix gmelinii) plantations[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2021, 45(6): 143-150 https://doi.org/10.12302/j.issn.1000-2006.202102012
中图分类号: S715   

参考文献

[1]
TANS, ZHAO H, YANG W, et al. The effect of canopy exchange on input of base cations in a subalpine spruce plantation during the growth season[J]. Sci Rep, 2018, 8(1):9373. DOI: 10.1038/s41598-018-27675-9.
[2]
RODRIGO A, AVILA A, RODÀ F. The chemistry of precipitation, throughfall and stemflow in two holm oak (Quercus ilex L.) forests under a contrasted pollution environment in NE Spain[J]. Sci Total Environ, 2003, 305(1/3):195-205. DOI: 10.1016/S0048-9697(02)00470-9.
[3]
刘楠, 冯富娟, 张秀月. 原始红松林皆伐后穿透雨对凋落物淋溶过程的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(1):159-167.
LIU N, FENG F J, ZHANG X Y. Effects of the litter leaching process by throughfall after clear cutting of primary Pinus koraiensis forest[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(1):159-167. DOI: 10.12302 /j.issn.1000-2006.201907046.
[4]
SCHEER M B. Mineral nutrient fluxes in rainfall and throughfall in a lowland Atlantic rainforest in southern Brazil[J]. J For Res, 2011, 16(1):76-81. DOI: 10.1007/s10310-010-0222-9.
[5]
CHIWA M, CROSSLEY A, SHEPPARD L J, et al. Throughfall chemistry and canopy interactions in a Sitka spruce plantation sprayed with six different simulated polluted mist treatments[J]. Environ Pollut, 2004, 127:57-64. DOI: 10.1016/s0269-7491(03)00259-8.
[6]
LEGOUT A, VAN DER HEIJDEN G, JAFFRAIN J, et al. Tree species effects on solution chemistry and major element fluxes: a case study in the Morvan (Breuil, France)[J]. For Ecol Manage, 2016, 378:244-258. DOI: 10.1016/j.foreco.2016.07.003.
[7]
HOFHANSL F, WANEK W, DRAGE S, et al. Controls of hydrochemical fluxes via stemflow in tropical lowland rainforests: effects of meteorology and vegetation characteristics[J]. J Hydrol, 2012, 452:247-258. DOI: 10.1016/j.jhydrol.2012.05.057.
[8]
GERMER S, NEILL C, KRUSCHE A V, et al. Seasonal and within-event dynamics of rainfall and throughfall chemistry in an open tropical rainforest in Rondônia, Brazil[J]. Biogeochemistry, 2007, 86(2):155-174. DOI: 10.1007/s10533-007-9152-9.
[9]
刘茜, 满秀玲, 田野宏, 等. 大兴安岭北部白桦次生林降雨再分配金属元素季节动态研究[J]. 水土保持学报, 2014, 28(5):119-123,133.
LIU X, MAN X L, TIAN Y H, et al. Study on seasonal dynamics if rainfall redistribution metal element of Batula platyphylla secondary forests in north of Greater Xing’an Mountains[J]. J Soil Water Conserv, 2014, 28(5):119-123,133. DOI: 10.13870/j.cnki.stbcxb.2014.05.021.
[10]
张楠, 范春楠, 陈思羽, 等. 次生落叶阔叶林降雨过程中的4种金属元素特征[J]. 南京林业大学学报(自然科学版), 2019, 43(4):178-184.
ZHANG N, FAN C N, CHEN S Y, et al. Effects of precipitation characteristics on the distribution of four metal elements by rainfalls in a secondary deciduous broad-leaved forest[J]. J Nanjing For Univ (Nat Sci Ed), 2019, 43(4):178-184. DOI: 10.3969/j.issn.1000-2006.201801030.
[11]
TAN S, ZHAO H, YANG W, et al. Forest canopy can efficiently filter trace metals in deposited precipitation in a subalpine spruce plantation[J]. Forests, 2019, 10(4):318. DOI: 10.3390/f10040318.
[12]
SU L, ZHAO C, XU W, et al. Hydrochemical fluxes in bulk precipitation, throughfall, and stemflow in a mixed evergreen and deciduous broadleaved forest[J]. Forests, 2019, 10(6):507. DOI: 10.3390/f10060507.
[13]
王登芝, 向星政, 聂立水. 北京西山不同人工林枯落物层的水化学性质[J]. 应用生态学报, 2007, 18(11):2637-2641.
WANG D Z, XIANG X Z, NIE L S. Hydro-chemical properties of litter layer in two kinds of plantations in Beijing Xishan Mountain[J]. Chin J Appl Ecol, 2007, 18(11):2637-2641. DOI: 10.13287/J.1001-9332.2007.0435.
[14]
王登芝, 聂立水, 李吉跃. 北京西山地区油松林水文过程中营养元素迁移特征[J]. 生态学报, 2006, 26(7):2101-2107.
WANG D Z, NIE L S, LI J Y. Transfer characteristics of nutrient elements through hydrological process of Pinus tabulaeformis stand in Beijing Xishan area[J]. Acta Ecol Sin, 2006, 26(7):2101-2107. DOI: 10.3321/j.issn:1000-0933.2006.07.007.
[15]
巩合德, 王开运, 杨万勤. 川西亚高山3种森林群落穿透雨和茎流养分特征研究[J]. 林业科学, 2005, 41(5):14-20.
GONG H D, WANG K Y, YANG W Q. Nutrient characteristics of throughfall and stemflow in three forests at the subalpine of western Sichuan[J]. Sci Silvae Sin, 2005, 41(5):14-20. DOI: 10.3321/j.issn:1001-7488.2005.05.003.
[16]
何洁, 杨万勤, 倪祥银, 等. 雪被斑块对川西亚高山森林凋落物冬季分解过程中钾和钠动态的影响[J]. 植物生态学报, 2014, 38(6):550-561.
摘要
亚高山森林冬季不同厚度雪被斑块下显著的冻融格局差异可能对凋落物分解过程中钾(K)和钠(Na)的动态具有重要影响, 然而已有研究还不足以清晰地认识这一过程。以川西亚高山森林6种代表性树种凋落物为研究对象, 采用凋落物网袋法, 探讨冬季不同厚度雪被斑块下雪被形成期、覆盖期和融化期凋落物分解过程中K和Na元素释放或富集的特征。整个雪被覆盖时期, 6种凋落物分解过程中Na均表现为富集特征, 且以覆盖期最为明显; 而K表现为释放特征, 以雪被融化期释放率最大。相对于其他雪被斑块, 厚型和中型雪被斑块下凋落物K释放率相对较高; 除康定柳(Salix paraplesia)和高山杜鹃(Rhododendron lapponicum)外, 其他物种凋落物在厚型和中型雪被斑块下Na富集率较高。同时, 统计分析结果表明, 物种和雪被显著影响冬季不同关键时期凋落物K和Na元素动态。除红桦(Betula albosinensis)和方枝柏(Sabina saltuaria)凋落物外, 温度因子与凋落物K和Na动态变化呈显著正相关。这些结果表明气候变暖情景下冬季雪被覆盖的减小将抑制亚高山森林冬季凋落物分解过程中K和Na元素的释放, 但是释放程度受凋落物质量和雪被覆盖时期的显著影响。
HE J, YANG W Q, NI X Y, et al. Effects of snow patch on the dynamics of potassium and sodium during litter decomposition in winter in a subalpine forest of western Sichuan[J]. Chin J Plant Ecol, 2014, 38(6):550-561. DOI: 10.3724/SP.J.1258.2014.00051.
[17]
FINÉR L, KORTELAINEN P, MATTSSON T, et al. Sulphate and base cation concentrations and export in streams from unmanaged forested catchments in Finland[J]. For Ecol Manage, 2004, 195(1/2):115-128. DOI: 10.1016/j.foreco.2004.02.040.
[18]
刘一霖, 吴福忠, 蒋龙, 等. 华西雨屏区麻栎-喜树人工混交林林冠对降雨中钾和钠离子再分配的影响[J]. 应用生态学报, 2018, 29(11):3503-3512.
LIU Y L, WU F Z, JIANG L, et al. Effects of canopy on the redistribution of potassium and sodium ions in rainfall in Quercus acutissima and Camptotheca acuminata mixed plantation of the rainy area of western China[J]. Chin J Appl Ecol, 2018, 29(11):3503-3512. DOI: 10.13287/j.1001-9332.201811.009.
[19]
胡鹏, 朗明翰, 吴晗玉, 等. 兴安落叶松林降雨再分配特征[J]. 干旱区资源与环境, 2018, 32(4):138-143.
HU P, LANG M H, WU H Y, et al. Rainfall redistribution characteristics in larch plantation in Harbin City[J]. J Arid Land Resour Environ, 2018, 32(4):138-143. DOI: 10.13448/j.cnki.jalre.2018.121.
[20]
周梅, 余新晓. 兴安落叶松原始林区降水化学输入的特征研究[J]. 中国生态农业学报, 2003, 11(2):119-121.
ZHOU M, YU X X. Study of rainfall hydrochemical import characteristics in Larix gmelini virgin forest[J]. Chin J Eco-Agr, 2003, 11(2):119-121. DOI: 10.1007/BF02951625.
[21]
盛后财, 蔡体久, 李奕, 等. 大兴安岭北部兴安落叶松林降雨截留再分配特征[J]. 水土保持学报, 2014, 28(6):101-105.
SHENG H C, CAI T J, LI Y, et al. Rainfall redistribution in Larix gmelinii forest on northern of Daxing’an Mountains, northeast of China[J]. J Soil Water Conserv, 2014, 28(6):101-105. DOI: 10.13870/j.cnki.stbcxb.2014.06.019.
[22]
刘玉杰, 满秀玲, 盛后财. 大兴安岭北部兴安落叶松林穿透雨延滞效应[J]. 应用生态学报, 2015, 26(11):3285-3292.
LIU Y J, MAN X L, SHENG H C. Time lag effects of throughfall in natural Larix gmelinii forest in the north of Great Xing’an Mountains, China[J]. Chin J Appl Ecol, 2015, 26(11):3285-3292. DOI: 10.13287/j.1001-9332.20150812.002.
[23]
盛后财, 蔡体久, 俞正祥. 大兴安岭北部兴安落叶松(Larix gmelinii)林下穿透雨空间分布特征[J]. 生态学报, 2016, 36(19):6266-6273.
SHENG H C, CAI T, YU Z X. Characteristics of the spatial distribution of throughfall in a Larix gmelinii forest in the northern Greater Khingan Range, northeast China[J]. Acta Ecol Sin, 2016, 36(19):6266-6273. DOI: 10.5846/stxb201412152499.
[24]
胡悦, 满秀玲, 魏红. 降雨特征对兴安落叶松林降雨再分配过程中钾元素影响分析[J]. 林业科学研究, 2017, 30(2):307-314.
HU Y, MAN X L, WEI H. Analysis on the effects of rainfall characteristics on potassium content in Larix gmelinii forest during rainfall redistribution[J]. For Res, 2017, 30(2):307-314. DOI: 10.13275/j.cnki.lykxyj.2017.02.017.
[25]
盛后财, 蔡体久, 朱道光, 等. 人工落叶松林降雨截留再分配及其水化学特征[J]. 水土保持学报, 2009, 23(2):79-83,89.
SHENG H C, CAI T J, ZHU D G, et al. Rainfall redistribution and hydrochemical characteristics in the larch plantation[J]. J Soil Water Conserv, 2009, 23(2):79-83, 89. DOI: 10.3321/j.issn:1009-2242.2009.02.018.
[26]
辛颖, 赵雨森, 潘保原. 黑龙江东部山地兴安落叶松人工林对水质的影响[J]. 中国水土保持科学, 2006, 4(2):29-33.
XIN Y, ZHAO Y S, PAN B Y. Influence of Larix gmelinii plantations at eastern mountainous region in Heilongjiang Province on water quality[J]. Sci Soil Water Conserv, 2006, 4(2):29-33. DOI: 10.3969/j.issn.1672-3007.2006.02.006.
[27]
STAN II J T V, LEVIA J D F, INAMDAR S P, et al. The effects of phenoseason and storm characteristics on throughfall solute wash off and leaching dynamics from a temperate deciduous forest canopy[J]. Sci Total Environ, 2012, 430:48-58. DOI: 10.1016/j.scitotenv.2012.04.060.
[28]
李颖, 庾从蓉, 孙钰峰, 等. 降雨强度对植被过滤带中胶体迁移过程的影响[J]. 水资源保护, 2020, 36(6):112-116.
LI Y, YU C R, SUN Y F, et al. Effect of rainfall intensity on colloid migration in vegetation filter strips[J]. Water Resources Protection, 2020, 36(6):112-116. DOI: 10.3880/j.issn.1004-6933.2020.06.018.
[29]
常颖, 范文义, 温一博. 帽儿山地区森林叶面积指数生长季动态研究[J]. 森林工程, 2016, 32(4):1-6.
CHANG Y, FAN W Y, WEN Y B. Study on seasonal dynamics of leaf area index in maoer mountain[J]. For Eng, 2016, 32(4):1-6. DOI: 10.3969/j.issn.1001-005X.2016.04.001.
[30]
张文猛, 王兴祥. 亚热带马尾松和木荷人工林降雨再分配及其化学特征[J]. 中南林业科技大学学报, 2011, 31(9):80-86.
ZHANG W M, WANG X X. Reallocation and chemical characteristics of rainfall in Pinus massoniana and Schima superba forests in subtropical China[J]. J Central South Univ For Technol, 2011, 31(9):80-86. DOI: 10.3969/j.issn.1673-923X.2011.09.017.
[31]
盛后财, 蔡体久, 琚存勇. 小兴安岭白桦林降水转化过程元素特征分析[J]. 北京林业大学学报, 2015, 37(2):59-66.
SHENG H C, CAI T J, JU C Y. Element characteristics in the precipitation conversion process in Betula platyphlla forest of Xiaoxing’an Mountains, northeastern China[J]. J Beijing For Univ, 2015, 37(2):59-66. DOI: 10.13332/j.cnki.jbfu.2015.02.009.
[32]
卢晓强, 丁访军, 方升佐, 等. 贵州省喀斯特地区原始林水化学特征[J]. 生态学报, 2010, 30(20):5448-5455.
LU X Q, DING F J, FANG S Z, et al. Characteristics of nutrient elements with water transport in the primary forest in a Karst area of Guizhou Province[J]. Acta Ecol Sin, 2010, 30(20):5448-5455. DOI: CNKI:SUN:STXB.0.2010-20-005.
[33]
CANTÚ S I, GONZALEZ R H. Interception loss, throughfall and stemflow chemistry in pine and oak forests in northeastern Mexico[J]. Tree Physiol, 2001, 21(12/13):1009-1013. DOI: 10.1093/treephys/21.12-13.1009.
[34]
赵联芳, 次仁吉保, 王成, 等. 强降雨下果园除草对径流中颗粒物及营养盐的影响[J]. 水资源保护, 2019, 35(3):57-62.
ZHAO L F, CIREN J B, WANG C, et al. Effect of orchard weeding on suspended solids and nutrients in runoff under heavy rainfall[J]. Water Resources Protection, 2019, 35(3):57-62. DOI: 10.3880/j.issn.1004-6933.2019.03.010.
[35]
卢杰, 张硕新, 方江平, 等. 藏东南高山松天然林水文过程中养分元素变化特征[J]. 自然资源学报, 2016, 31(1):151-162.
LU J, ZHANG S X, FANG J P, et al. Variation characteristics of nutrient elements through hydrological processes in Pinus densata natural forest of southeast Tibet[J]. J Nat Resour, 2016, 31(1):151-162. DOI: 10.11849/zrzyxb.20141744.
[36]
蔡玉林, 李飞, 李家永, 等. 红壤丘陵区人工林降水化学研究[J]. 自然资源学报, 2003, 18(1):99-104.
CAI Y L, LI F, LI J Y, et al. A study on rainfall chemistry of artificial forests in red earth hilly area[J]. J Nat Resour, 2003, 18(1):99-104. DOI: 10.3321/j.issn:1000-3037.2003.01.015.
[37]
黄智军, 刘青青, 侯晓龙, 等. 长汀不同郁闭度马尾松林降雨淋溶养分输入特征[J]. 森林与环境学报, 2018, 38(2):129-134.
HUANG Z J, LIU Q Q, HOU X L, et al. Characteristics of rainfall leaching nutrient input in Pinus massoniana forest with different canopy density of Changting[J]. J For Environ, 2018, 38(2):129-134. DOI: 10.13324/j.cnki.jfcf.2018.02.001.
[38]
张娜, 乔玉娜, 刘兴诏, 等. 鼎湖山季风常绿阔叶林大气降雨、穿透雨和树干流的养分特征[J]. 热带亚热带植物学报, 2010, 18(5):502-510.
ZHANG N, QIAO Y N, LIU X Z, et al. Nutrient characteristics in incident rainfall, throughfall, and stemflow in monsoon evergreen broad-leaved forest at Dinghushan[J]. J Trop Subtrop Bot, 2010, 18(5):502-510. DOI: 10.3969/j.issn.1005-3395.2010.05.006.
[39]
罗忠, 文仕知. 枫香人工林林冠截留降水分配及养分特征[J]. 中南林业科技大学学报, 2010, 30(2):55-59.
LUO Z, WEN S Z. Canopy interception and changes in nutrient concentrations in a Liquidambar formosana plantation in Tianjiling Forestry Farm[J]. J Central South Univ For Technol, 2010, 30(2):55-59. DOI: 10.3969/j.issn.1673-923X.2010.02.011.

基金

黑龙江省自然科学基金项目(LH2020C032)
中央高校青年教师创新项目(2572018BA10)

编辑: 王国栋

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
PDF(1651 KB)

Accesses

Citation

Detail

段落导航
相关文章

/