[1] |
张志翔. 树木学[M]. 北京: 中国林业出版社, 2008.
|
|
ZHANG Z X. Dendrology[M]. Beijing: China Forestry Publishing House, 2008.
|
[2] |
PETERHANSEL C, OFFERMANN S. Re-engineering of carbon fixation in plants-challenges for plant biotechnology to improve yields in a high-CO2 world[J]. Curr Opin Biotechnol, 2012, 23(2):204-208. DOI: 10.1016/j.copbio.2011.12.013.
doi: 10.1016/j.copbio.2011.12.013
|
[3] |
ANDRALOJC P J, CARMO-SILVA E, DEGEN G E, et al. Increa-sing metabolic potential:C-fixation[J]. Essays Biochem, 2018, 62(1):109-118. DOI: 10.1042/EBC20170014.
doi: 10.1042/EBC20170014
|
[4] |
王琪, 徐程扬. 氮磷对植物光合作用及碳分配的影响[J]. 山东林业科技, 2005, 35(5):59-62.
|
|
WANG Q, XU C Y. Affects of nitrogen and phosphorus on plant leaf photosynthesis and carbon partitioning[J]. J Shandong For Sci Technol, 2005, 35(5):59-62. DOI: 10.3969/j.issn.1002-2724.2005.05.040.
doi: 10.3969/j.issn.1002-2724.2005.05.040
|
[5] |
SHARWOOD R E. Engineering chloroplasts to improve Rubisco catalysis:prospects for translating improvements into food and fiber crops[J]. New Phytol, 2017, 213(2):494-510. DOI: 10.1111/nph.14351.
doi: 10.1111/nph.14351
|
[6] |
GALMÉS J, CAPÓ-BAUCÀ S, NIINEMETS Ü, et al. Potential improvement of photosynthetic CO2 assimilation in crops by exploiting the natural variation in the temperature response of Rubisco catalytic traits[J]. Curr Opin Plant Biol, 2019, 49:60-67. DOI: 10.1016/j.pbi.2019.05.002.
doi: 10.1016/j.pbi.2019.05.002
|
[7] |
全光华, 刘锴栋. Rubisco的研究进展[J]. 安徽农业科学, 2011, 39(21):12652,12746.
|
|
QUAN G H, LIU K D. The research progress of Rubisco[J]. J Anhui Agric Sci, 2011, 39(21):12652,12746. DOI: 10.13989/j.cnki.0517-6611.2011.21.013.
doi: 10.13989/j.cnki.0517-6611.2011.21.013
|
[8] |
EVANS J R. Photosynthesis and nitrogen relationships in leaves of C3 plants[J]. Oecologia, 1989, 78(1):9-19. DOI: 10.1007/BF00377192.
doi: 10.1007/BF00377192
|
[9] |
MAKINO A, SAKASHITA H, HIDEMA J, et al. Distinctive responses of ribulose-1,5-bisphosphate carboxylase and carbonic anhydrase in wheat leaves to nitrogen nutrition and their possible relationships to CO2-transfer resistance[J]. Plant Physiol, 1992, 100(4):1737-1743. DOI: 10.1104/pp.100.4.1737.
doi: 10.1104/pp.100.4.1737
|
[10] |
许大全. 光合作用学[M]. 北京: 科学出版社, 2013.
|
|
XU D Q. Photosynthesis[M]. Beijing: Science Press, 2013.
|
[11] |
EVANS J R. The relationship between carbon-dioxide-limited photosynthetic rate and ribulose-1,5-bisphosphate-carboxylase content in two nuclear-cytoplasm substitution lines of wheat,and the coordination of ribulose-bisphosphate-carboxylation and electron-transport capacities[J]. Planta, 1986, 167(3):351-358. DOI: 10.1007/BF00391338.
doi: 10.1007/BF00391338
|
[12] |
MAKINO A, MAE T, OHIRA K. Differences between wheat and rice in the enzymic properties of ribulose-1,5-bisphosphate carboxylase/oxygenase and the relationship to photosynthetic gas exchange[J]. Planta, 1988, 174(1):30-38. DOI: 10.1007/BF00394870.
doi: 10.1007/BF00394870
|
[13] |
IZUMI M, TSUNODA H, SUZUKI Y, et al. RBCS1A and RBCS3B,two major members within the Arabidopsis RBCS multigene family,function to yield sufficient Rubisco content for leaf photosynthetic capacity[J]. J Exp Bot, 2012, 63(5):2159-2170. DOI: 10.1093/jxb/err434.
doi: 10.1093/jxb/err434
|
[14] |
韩鹰, 陈刚, 王忠. Rubisco活化酶的研究进展[J]. 植物学通报, 2000(4):306-331.
|
|
HAN Y, CHEN G, WANG Z. The progresses of studies on Rubisco activase[J]. Chin Bull Bot, 2000(4):306-331.
|
[15] |
FOYER C H, BLOOM A J, QUEVAL G, et al. Photorespiratory metabolism:genes,mutants,energetics,and redox signaling[J]. Annu Rev Plant Biol, 2009, 60:455-484. DOI: 10.1146/annurev.arplant.043008.091948.
doi: 10.1146/annurev.arplant.043008.091948
|
[16] |
吴廷娟, 田梦平, 谢小龙. 不同地黄品种光合特性的比较研究[J]. 世界科学技术-中医药现代化, 2020, 22(8):2899-2906.
|
|
WU T J, TIAN M P, XIE X L. Comparison of photosynthetic cha-racteristics of different germplasm Rehmannia glutinosa[J]. Mod Tradit Chin Med Mater Med World Sci Technol, 2020, 22(8):2899-2906. DOI: 10.11842/wst.20190425002.
doi: 10.11842/wst.20190425002
|
[17] |
李荣生, 许煌灿, 尹光天, 等. 植物水分利用效率的研究进展[J]. 林业科学研究, 2003, 16(3):366-371.
|
|
LI R S, XU H C, YIN G T, et al. Advances in the water use efficiency of plant[J]. For Res, 2003, 16(3):366-371. DOI: 10.3321/j.issn:1001-1498.2003.03.020.
doi: 10.3321/j.issn:1001-1498.2003.03.020
|
[18] |
熊伟, 王彦辉, 于澎涛. 树木水分利用效率研究综述[J]. 生态学杂志, 2005, 24(4):417-421.
|
|
XIONG W, WANG Y H, YU P T. A review on the study of water use efficiency of tree species[J]. Chin J Ecol, 2005, 24(4):417-421.
|
[19] |
ANDERSSON I, BACKLUND A. Structure and function of Rubisco[J]. Plant Physiol Biochem, 2008, 46(3):275-291. DOI: 10.1016/j.plaphy.2008.01.001.
doi: 10.1016/j.plaphy.2008.01.001
|
[20] |
薛元夏, 邓西平, 杨淑慎. 参与逆境应答的小麦RBCS11基因启动子功能分析[J]. 农业生物技术学报, 2016, 24(7):946-956.
|
|
XUE Y X, DENG X P, YANG S S. Promoter functional analysis of RBCS11 gene participate in the abiotic stress responsible in wheat (Triticum aestivum)[J]. J Agric Biotechnol, 2016, 24(7):946-956. DOI: 10.3969/j.issn.1674-7968.2016.07.002.
doi: 10.3969/j.issn.1674-7968.2016.07.002
|
[21] |
何亚飞, 李霞, 谢寅峰. Rubisco与Rubisco活化酶的分子机理研究进展[J]. 分子植物育种, 2017, 15(8):3295-3301.
|
|
HE Y F, LI X, XIE Y F. Advances in molecular mechanisms of Rubisco and Rubisco activase[J]. Mol Plant Breed, 2017, 15(8):3295-3301. DOI: 10.13271/j.mpb.015.003295.
doi: 10.13271/j.mpb.015.003295
|
[22] |
刘玉洁. 本生烟乙醇酸氧化酶GOX的结构与功能研究[D]. 北京: 中国农业大学, 2019.
|
|
LIU Y J. Structural and functional studies of glycolate oxidase(GOX) from Nicotiana benthamiana[D]. Beijing: China Agricultural University, 2019.
|
[23] |
李莹, 阚国仕, 孙文丽, 等. 大豆乙醇酸氧化酶基因的克隆、表达和酶学活性分析[J]. 湖北农业科学, 2011, 50(1):172-176.
|
|
LI Y, KAN G S, SUN W L, et al. Cloning and expression of soybean glycolate oxidase gene in Escherichia coli and enzyme activity analysis[J]. Hubei Agric Sci, 2011, 50(1):172-176. DOI: 10.14088/j.cnki.issn0439-8114.2011.01.039.
doi: 10.14088/j.cnki.issn0439-8114.2011.01.039
|
[24] |
周云龙. 植物生物学[M]. 北京: 高等教育出版社, 1999.
|
|
ZHOU Y L. Plant biology[M]. Beijing: Higher Education Press, 1999.
|
[25] |
陈根云, 俞冠路, 陈悦, 等. 光合作用对光和二氧化碳响应的观测方法探讨[J]. 植物生理与分子生物学学报, 2006, 32(6):691-696.
|
|
CHEN G Y, YU G L, CHEN Y, et al. Exploring the observation methods of photosynthetic responses to light and carbon dioxide[J]. J Plant Physiol Mol Biol, 2006, 32(6):691-696. DOI: 10.3321/j.issn:1671-3877.2006.06.012.
doi: 10.3321/j.issn:1671-3877.2006.06.012
|
[26] |
黄国伟, 李振芳, 申伟, 等. 紫薇优良无性系生长和光合特征分析[J]. 中国农学通报, 2014, 30(25):38-42.
|
|
HUANG G W, LI Z F, SHEN W, et al. Analysis of the growth and photosynthetic characteristics of the superior clones in Lagerstroemia indica[J]. Chin Agric Sci Bull, 2014, 30(25):38-42.
|
[27] |
赵思思, 刘兴菊, 王晓叶, 等. 黑榆不同无性系苗期表型性状及光合特征的差异性比较[J]. 河北林果研究, 2017, 32(2):118-123.
|
|
ZHAO S S, LIU X J, WANG X Y, et al. Comparison of phenotypic traits and photosynthetic characteristics of different clones of Ulmus pumila at seedling stage[J]. Hebei J For Orchard Res, 2017, 32(2):118-123. DOI: 10.13320/j.cnki.hjfor.2017.0022.
doi: 10.13320/j.cnki.hjfor.2017.0022
|