四川若尔盖湿地国家级自然保护区水体氢氧同位素与水化学特征

孙荣卿, 董李勤, 张昆, 刘宏强, 王耠熠, 胡昭佚

南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (2) : 169-178.

PDF(8612 KB)
PDF(8612 KB)
南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (2) : 169-178. DOI: 10.12302/j.issn.1000-2006.202104021
研究论文

四川若尔盖湿地国家级自然保护区水体氢氧同位素与水化学特征

作者信息 +

Hydrogen and oxygen isotopes and hydrochemical parameters of water samples from the Sichuan Zoige Wetland Nature Reserve

Author information +
文章历史 +

摘要

【目的】了解若尔盖湿地国家级自然保护区水环境特征、水体补给关系,为合理保护和改善湿地水生态环境提供理论参考。【方法】采用液态水/水汽同位素分析仪测定了氢氧稳定同位素丰度,通过离子色谱仪测定八大离子水化学特征指标,对若尔盖湿地国家级自然保护区不同水体(降水、河水、沼泽水、地下水)的化学参数和氢氧稳定同位素[(δ(D)和δ(18O)]进行分析,研究该区域水化学类型和同位素空间分布特征,探讨了其形成原因和环境意义。【结果】①湖泊水体、黑河及其入沼泽水体、出沼泽水体的主要化学类型都为$HCO_{3}^{-}$-Ca型(重碳酸钙型水);②若尔盖夏季“大气水线”为δ(D) = 8.28 δ(18O)+13.86,说明受局地水汽、二次蒸发影响小,但蒸发强烈。偏小的δ(18O)和δ(D)值,反映了雨季受海洋性暖湿气团的影响,降水集中且丰沛,重同位素沿途受雨水冲刷作用较强的特点。HYSPLIT模拟结果证明若尔盖夏季水汽来源于平稳的西风带,受西风环流控制;③降水是其他水体(河水、沼泽水、地下水)最初始的补给来源;河水斜率与沼泽水斜率相近,趋近平行,说明二者的补给关系最为频繁和密切,其中沼泽水接受黑河的支流——果曲、津曲、阿蒙曲、德纳的补给,而黑河的干流与沼泽则是交汇补给。【结论】若尔盖各水体水化学特征主要受流域水岩作用所调控,水体氢氧稳定同位素特征揭示了流域降水、蒸发、大气环流及水文循环过程。

Abstract

【Objective】 This study aimed to clarify the water environment characteristics and water supply relationship in the Zoige Wetland Nature Reserve, thereby providing a theoretical reference for protecting and improving this wetland and water ecosystem. 【Method】 In this study, the abundance of stable hydrogen and oxygen isotopes was measured using a liquid water/water vapor isotope analyzer, and eight ion hydrochemical characteristic indexes were measured using ion chromatography. The chemical parameters and stable hydrogen and oxygen isotopes of different water bodies (precipitation water, river water, swamp water, and underground water) in Zoige Wetland National Nature Reserve were analyzed[(δ(D) and δ(18O)], the hydrochemical types and spatial distribution characteristics of isotopes in this area were preliminarily examined, and their formation causes and environmental significance were discussed. 【Result】 (1) The main chemical type of lake water and that of the Heihe River which flows in and out of the wetlands is $HCO_{3}^{-}$-Ca (calcium bicarbonate) water. (2) The “atmospheric water line” in Ruoergai in summer is δ(D)=8.28 δ(18O)+13.86, indicating that it is less affected by the local water vapor and secondary evaporation, but evaporation is strong. Lower δ(18O) and δ(D) values reflect the characteristics of concentrated and abundant precipitation in the rainy season under the influence of marine warm and humid air masses and intense erosion of heavy isotopes along the way. The split simulation results showed that the water vapor in Zoige in summer originated from the stable westerly zone and was controlled by a westerly circulation. (3) Precipitation is the initial source of river water, swamp water, and groundwater, and the slope of river water is similar to that of swamp water, which indicates that the supply relationship between them is close and will occur most frequently. Swamp water was supplied by the tributaries of the Heihe River (Guoqu, Jingu, Amengqu, and Dena rivers), whereas the mainstream of Heihe River and the swamp were supplied through the respective intersections. 【Conclusion】 Hydrochemical characteristics of each water body in Zoige were mainly affected by water-rock interactions in the basin. The stable hydrogen and oxygen isotope characteristics of the water bodies revealed the processes of precipitation, evaporation, atmospheric circulation, and hydrological cycling in the basin.

关键词

若尔盖湿地自然保护区 / 大气降水 / 氢氧同位素 / 氘盈余 / 水化学

Key words

Zoige Wetland Nature Reserve / atmospheric precipitation / hydrogen and oxygen isotopes / deuterium surplus / hydrochemical

引用本文

导出引用
孙荣卿, 董李勤, 张昆, . 四川若尔盖湿地国家级自然保护区水体氢氧同位素与水化学特征[J]. 南京林业大学学报(自然科学版). 2022, 46(2): 169-178 https://doi.org/10.12302/j.issn.1000-2006.202104021
SUN Rongqing, DONG Liqin, ZHANG Kun, et al. Hydrogen and oxygen isotopes and hydrochemical parameters of water samples from the Sichuan Zoige Wetland Nature Reserve[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(2): 169-178 https://doi.org/10.12302/j.issn.1000-2006.202104021
中图分类号: S718.46   

参考文献

[1]
LI W L, XUE P F, LIU C L, et al. Monitoring and landscape dynamic analysis of alpine wetland area based on multiple algorithms:a case study of Zoige Plateau[J]. Sensors (Basel), 2020, 20(24):7315. DOI: 10.3390/s20247315.
[2]
张晓云, 吕宪国, 沈松平. 若尔盖高原湿地生态系统服务价值动态[J]. 应用生态学报, 2009, 20(5):1147-1152.
ZHANG X Y, LYU X G, SHEN S P. Dynamic changes of Ruoergai Plateau wetland ecosystem service value[J]. Chin J Appl Ecol, 2009, 20(5):1147-1152.
[3]
JIN X Y, QIANG H F, ZHAO L, et al. SPEI-based analysis of spatio-temporal variation characteristics for annual and seasonal drought in the Zoige wetland,southwest China from 1961 to 2016[J]. Theor Appl Climatol, 2020, 139(1/2):711-725. DOI: 10.1007/s00704-019-02981-y.
[4]
邹长新, 陈金林, 李海东. 基于模糊综合评价的若尔盖湿地生态安全评价[J]. 南京林业大学学报(自然科学版), 2012, 36(3):53-58.
ZOU C X, CHEN J L, LI H D. Fuzzy comprehensive assessment of ecological security evaluation in Zoige wetland[J]. J Nanjing For Univ (Nat Sci Ed), 2012, 36(3):53-58. DOI: 10.3969/j.issn.1000-2006.2012.03.012.
[5]
白军红, 欧阳华, 王庆改, 等. 大规模排水前后若尔盖高原湿地景观格局特征变化[J]. 农业工程学报, 2009, 25(S1):64-68.
BAI J H, OUYANG H, WANG Q G, et al. Changes in landscape patterns of alpine wetlands on Zoige Plateau before and after drainage[J]. Trans Chin Soc Agric Eng, 2009, 25(S1):64-68.
[6]
张兵, 宋献方, 张应华, 等. 三江平原地表水与地下水氢氧同位素和水化学特征[J]. 水文, 2014, 34(2):38-43.
ZHANG B, SONG X F, ZHANG Y H, et al. Hydrogen and oxygen isotopic and hydrochemical characteristics of water in Sanjiang Plain[J]. J China Hydrol, 2014, 34(2):38-43. DOI: 10.3969/j.issn.1000-0852.2014.02.008.
[7]
VRZEL J, SOLOMON D K, BLAŽEKA Ž, et al. The study of the interactions between groundwater and Sava River water in the Ljubljansko Polje Aquifer System (Slovenia)[J]. J Hydrol, 2018, 556:384-396. DOI: 10.1016/j.jhydrol.2017.11.022.
[8]
ALI W, MUSHTAQ N, JAVED T, et al. Vertical mixing with return irrigation water the cause of arsenic enrichment in groundwater of district Larkana Sindh,Pakistan[J]. Environ Pollut, 2019, 245:77-88. DOI: 10.1016/j.envpol.2018.10.103.
[9]
PAULSSON O, WIDERLUND A. Pit lake oxygen and hydrogen isotopic composition in subarctic Sweden:a comparison to the local meteoric water line[J]. Appl Geochem, 2020, 118:104611. DOI: 10.1016/j.apgeochem.2020.104611.
[10]
刘兵, 王贺, 姜永海, 等. 基于水化学和氢氧同位素的东宫河流域不同水体转化关系研究[J]. 环境科学研究, 2020, 33(9):1979-1990.
LIU B, WANG H, JIANG Y H, et al. Transformation relationship of different water body in Donggong River basin based on hydrochemistry and hydrogen-oxygen isotopes[J]. Res Environ Sci, 2020, 33(9):1979-1990. DOI: 10.13198/j.issn.1001-6929.2020.05.11.
[11]
苏鹏燕, 张明军, 王圣杰, 等. 基于氢氧稳定同位素的黄河兰州段河岸植物水分来源[J]. 应用生态学报, 2020, 31(6):1835-1843.
SU P Y, ZHANG M J, WANG S J, et al. Water sources of riparian plants based on stable hydrogen and oxygen isotopes in Lanzhou section of the Yellow River,China[J]. Chin J Appl Ecol, 2020, 31(6):1835-1843. DOI: 10.13287/j.1001-9332.202006.022.
[12]
宋梦媛, 李忠勤, 王飞腾, 等. 新疆吉木乃诸河水体氢氧同位素和水化学特征[J]. 环境化学, 2020, 39(7):1809-1820.
SONG M Y, LI Z Q, WANG F T, et al. Hydrogen and oxygen isotopes and hydrochemical parameters of water samples from the Jimunai River basin,Xinjiang[J]. Environ Chem, 2020, 39(7):1809-1820. DOI: 10.7524/j.issn.0254-6108.2019050402.
[13]
朱雅娟, 齐凯, 庞志勇. 夏季高寒沙地乌柳林的水分来源[J]. 南京林业大学学报(自然科学版), 2019, 43(1):91-97.
ZHU Y J, QI K, PANG Z Y. Water source of Salix cheilophila plantation in alpine sandy land in summer[J]. J Nanjing For Univ (Nat Sci Ed), 2019, 43(1):91-97. DOI: 10.3969/j.issn.1000-2006.201806036.
[14]
林聪业, 高柏, 华恩祥, 等. 拉萨河流域水环境氢氧同位素特征及其指示意义[J]. 有色金属(冶炼部分), 2020(11):99-106.
LIN C Y, GAO B, HUA E X, et al. Characteristics and indicative significance of oxygen and hydrogen isotopes in water environment of Lhasa River basin[J]. Nonferrous Met (Extr Metall), 2020(11):99-106. DOI: 10.3969/j.issn.1007-7545.2020.11.018.
[15]
KOSTROVA S S, MEYER H, FERNANDOY F, et al. Moisture origin and stable isotope characteristics of precipitation in southeast Siberia[J]. Hydrol Process, 2020, 34(1):51-67. DOI: 10.1002/hyp.13571.
[16]
崔蕊, 汪季, 张成福, 等. 吉兰泰盐湖氢氧同位素及湖水来源分析[J]. 内蒙古林业科技, 2019, 45(1):17-21.
CUI R, WANG J, ZHANG C F, et al. Analysis on hydrogen and oxygen isotopes and lake water source in Girantai Saline Lake[J]. Inn Mong For Sci Technol, 2019, 45(1):17-21. DOI: 10.3969/j.issn.1007-4066.2019.01.004.
[17]
张海月. 金佛山流域不同水体中氢氧稳定同位素特征及其环境意义[D]. 重庆: 西南大学, 2018.
ZHANG H Y. The characte-ristics of the hydrogen and oxygen isotopes in different water bodies in Jinfo Mountain and its environmental significance[D]. Chongqing: Southwest University, 2018.
[18]
左丹丹, 罗鹏, 杨浩, 等. 保护地空间邻近效应和保护成效评估:以若尔盖湿地国家级自然保护区为例[J]. 应用与环境生物学报, 2019, 25(4):854-861.
ZUO D D, LUO P, YANG H, et al. Assessing the space neighborhood effects and the protection effectiveness of a protected area:a case study from Zoige Wetland National Nature Reserve[J]. Chin J Appl Environ Biol, 2019, 25(4):854-861. DOI: 10.19675/j.cnki.1006-687x.2018.11030.
[19]
向雪梅. 若尔盖湿地保护区地下水运动特征[D]. 成都: 四川大学, 2006.
XIANG X M. Researches on the groundwater flow in Zoige wetland[D]. Chengdu: Sichuan University, 2006.
[20]
SUN C J, CHEN Y N, LI J, et al. Stable isotope variations in precipitation in the northwesternmost Tibetan Plateau related to various meteorological controlling factors[J]. Atmos Res, 2019, 227:66-78. DOI: 10.1016/j.atmosres.2019.04.026.
[21]
张楠, 范春楠, 陈思羽, 等. 次生落叶阔叶林降雨过程中的4种金属元素特征[J]. 南京林业大学学报(自然科学版), 2019, 43(4):178-184.
ZHANG N, FAN C N, CHEN S Y, et al. Effects of precipitation characteristics on the distribution of four metal ele-ments by rainfalls in a secondary deciduous broad-leaved forest[J]. J Nanjing For Univ (Nat Sci Ed), 2019, 43(4):178-184. DOI: 10.3969/j.issn.1000-2006.201801030.
[22]
徐秋娥, 刘澄静, 角媛梅, 等. 稳定氢氧同位素示踪水汽来源对哈尼梯田降水补给的影响[J]. 生态学报, 2020, 40(5):1709-1717.
XU Q E, LIU C /DJ, JIAO Y M, et al. Impacts of stable isotopic composition and moisture sources of precipitation on precipitation recharge of Hani Rice Terraces during the dry season[J]. Chin J Plant Ecol, 2020, 40(5):1709-1717. DOI: 10.5846/stxb201901170142.
[23]
LI Q Y, WU J L, SHEN B B, et al. Water chemistry and stable isotopes of different water types in Tajikistan[J]. Environ Process, 2018, 5(1):127-137. DOI: 10.1007/s40710-018-0312-9.
[24]
PIPER A M. A graphic procedure in the geochemical interpretation of water-analyses[J]. Trans AGU, 1944, 25(6):914. DOI: 10.1029/tr025i006p00914.
[25]
CRAIG H. Isotopic variations in meteoric waters[J]. Science, 1961, 133(3465):1702-1703. DOI: 10.1126/science.133.3465.1702.
[26]
陈琦, 郭锦荣, 李超, 等. 庐山地区大气降水中稳定同位素变化特征[J]. 自然资源学报, 2019, 34(6):1306-1316.
CHEN Q, GUO J R, LI C, et al. Variation characteristics of stable isotope in precipitation in Mount Lu area[J]. J Nat Resour, 2019, 34(6):1306-1316.
[27]
隋明浈, 高德强, 徐庆, 等. 江苏高邮大气降水氢氧同位素特征及水汽来源[J]. 应用生态学报, 2019, 30(6):1823-1832.
SUI M Z, GAO D Q, XU Q, et al. Characteristics of hydrogen and oxygen isotopes in precipitation and moisture sources in Gaoyou,Jiangsu Province,China[J]. Chin J Appl Ecol, 2019, 30(6):1823-1832. DOI: 10.13287/j.1001-9332.201906.009.
[28]
温艳茹, 王建力. 重庆地区大气场降水中氢氧同位素变化特征及与大气环流的关系[J]. 环境科学, 2016, 37(7):2462-2469.
WEN Y R, WANG J L. Variations of stable isotope in precipitation and its atmospheric circulation effect in Chongqing[J]. Environ Sci, 2016, 37(7):2462-2469. DOI: 10.13227/j.hjkx.2016.07.007.
[29]
YURTSEVER Y. Worldwide survey of stable isotopes in precipitation[M]// International Report. Vienna: IAEA, 1975, 1040.
[30]
郑淑蕙, 侯发高, 倪葆龄. 我国大气降水的氢氧稳定同位素研究[J]. 科学通报, 1983, 28(13):801-806.
[31]
吴华武, 章新平, 孙广禄, 等. 湖南长沙地区大气降水中稳定同位素特征变化[J]. 长江流域资源与环境, 2012, 21(5):540-546.
WU H W, ZHANG X P, SUN G L, et al. Variations of stable isotopic characteristics of atmospheric precipitation from Changsha,Hunan[J]. Resour Environ Yangtza Basin, 2012, 21(5):540-546.
[32]
徐庆, 刘世荣, 安树青, 等. 卧龙地区大气降水氢氧同位素特征的研究[J]. 林业科学研究, 2006, 19(6):679-686.
XU Q, LIU S R, AN S Q, et al. Study on hydrogen and oxygen stable isotopes in precipitation in Wolong Nature Reserve,Sichuan Province[J]. For Res, 2006, 19(6):679-686. DOI: 10.3321/j.issn:1001-1498.2006.06.002.
[33]
谷金钰, 张文杰, 许文盛, 等. 武汉市大气降水δ(D)和δ(18O)变化特征及水汽来源[J]. 人民长江, 2017, 48(13):31-35,63.
GU J Y, ZHANG W J, XU W S, et al. Characteristics of δ(D) and δ(18O) in precipitation and water-vapor sources in Wuhan,middle reach of Changjiang River[J]. Yangtze River, 2017, 48(13):31-35,63. DOI: 10.16232/j.cnki.1001-4179.2017.13.008.
[34]
武亚遵, 万军伟, 林云. 湖北宜昌西陵峡地区大气降雨氢氧同位素特征分析[J]. 地质科技情报, 2011, 30(3):93-97.
WU Y Z, WAN J W, LIN Y. Characteristics of hydrogen and oxygen isotopes for precipitation in Xiling Gorge region of Yichang,Hubei Province[J]. Geol Sci Technol Inf, 2011, 30(3):93-97. DOI: 10.3969/j.issn.1000-7849.2011.03.013.
[35]
魏笑. 黄土高原同纬度大气降水稳定同位素分析[D]. 杨凌: 西北农林科技大学, 2016.
WEI X. Stabal isotopeanalysis of atmospheric precipitation in the same latitude on the Loess tableland[D]. Yangling: Northwest A & F University, 2016.
[36]
侯典炯, 秦翔, 吴锦奎, 等. 乌鲁木齐大气降水稳定同位素与水汽来源关系研究[J]. 干旱区资源与环境, 2011, 25(10):136-142.
HOU D J, QIN X, WU J K, et al. Characteristics of stable isotopes in precipitation and the water vapor sources in Urumqi[J]. J Arid Land Resour Environ, 2011, 25(10):136-142. DOI: 10.13448/j.cnki.jalre.2011.10.026.
[37]
李广, 章新平, 张新主, 等. 云南腾冲地区大气降水中氢氧稳定同位素特征[J]. 长江流域资源与环境, 2013, 22(11):1458-1465.
LI G, ZHANG X P, ZHANG X Z, et al. Stable hydrogen and oxygen isotopes characteristics of atmospheric precipitation from Tengchong,Yunnan[J]. Resour Environ Yangtze Basin, 2013, 22(11):1458-1465.
[38]
朱晓燕, 张美良, 吴夏, 等. 桂林地区大气降水(大雨、暴雨)的δ(18O)特征与水汽来源的关系[J]. 中国岩溶, 2017, 36(2):139-161.
ZHU X Y, ZHANG M L, WU X, et al. The relationship between δ(18O) characteristics of the precipitation (heavy rainfall or rainstorm) and its water vapor sources in Guilin,China[J]. Carsologica Sin, 2017, 36(2):139-161. DOI: 10.11932/karst20170201.
[39]
唐雁英. 水汽源区变化及其对流过程对我国典型东亚季风区降水稳定同位素的影响[D]. 南京: 南京大学, 2015.
TANG Y Y. Effects of changes in moisture source and the upstream rainout on stable isotopes in summer precipitation in the typical east Asian monsoon regions[D]. Nanjing: Nanjing University, 2015.
[40]
DANSGAARD W. Stable isotopes in precipitation[J]. Tellus, 1964, 16(4):436-468. DOI: 10.1111/j.2153-3490.1964.tb00181.x.
[41]
GAT J R. Oxygen and hydrogen isotopes in the hydrologic cycle[J]. Annu Rev Earth Planet Sci, 1996, 24:225-262. DOI: 10.1146/annurev.earth.24.1.225.
[42]
MACHAVARAM M V, KRISHNAMURTHY R V. Earth surface evaporative process:a case study from the Great Lakes region of the United States based on deuterium excess in precipitation[J]. Geochimica Cosmochimica Acta, 1995, 59(20):4279-4283. DOI: 10.1016/0016-7037(95)00256-Y.
[43]
DRAXLER R. HYSPLIT (hybrid single-particle Lagrangian integrated trajectory) model access via NOAA ARL READY website[J/OL][2021-02-01].http:www.arl.noaa.gov/ready/hysplit4html 2003.
[44]
刘芳, 曹广超, 曹生奎, 等. 祁连山南坡主要流域河水稳定同位素特征及补给关系[J]. 中国沙漠, 2020, 40(6):151-161.
LIU F, CAO G C, CAO S K, et al. Research on stable isotope characteri-stics and recharge relationship of the main river on the southern slope of Qilian Mountains[J]. J Desert Res, 2020, 40(6):151-161. DOI: 10.7522/j.issn.1000-694X.2020.00085.
[45]
宋春林, 孙向阳, 王根绪. 贡嘎山亚高山降水稳定同位素特征及水汽来源研究[J]. 长江流域资源与环境, 2015, 24(11):1860-1869.
SONG C L, SUN X Y, WANG G X. A study on precipitation stable isotopes characteristics and vapor sources of the subalpine Gongga Mountain,China[J]. Resour Environ Yangtze Basin, 2015, 24(11):1860-1869. DOI: 10.11870/cjlyzyyhj201511008.
[46]
刘芳. 祁连山南坡水体氢氧稳定同位素特征及转换关系研究[D]. 西宁: 青海师范大学, 2020.
[47]
刘洁遥, 张福平, 冯起, 等. 陕甘宁地区降水稳定同位素特征及水汽来源[J]. 应用生态学报, 2019, 30(7):2191-2200.
LIU J Y, ZHANG F P, FENG Q, et al. Stable isotopes characteristics of precipitation over Shaanxi-Gansu-Ningxia and its water vapor sources[J]. Chin J Appl Ecol, 2019, 30(7):2191-2200. DOI: 10.13287/j.1001-9332.201907.021.
[48]
TIAN L D, YAO T D, MACCLUNE K, et al. Stable isotopic variations in west China:a consideration of moisture sources[J]. J Geophys Res, 2007, 112(D10):D10112. DOI: 10.1029/2006jd007718.

基金

云南省科技厅基础研究专项面上项目(202001AT070132)
云南省教育厅基金项目(2019J0184)
云南省教育厅基金项目(2018JS346)
云南省院士专家工作站(2019IC012)
国家科技基础资源调查专项(2019FY100603)
国家自然科学基金项目(41461022)

编辑: 吴祝华
PDF(8612 KB)

Accesses

Citation

Detail

段落导航
相关文章

/