基于CRISPR/Cas9的毛果杨bHLH106转录因子的功能研究

孙佳彤, 国艳娇, 李爽, 周晨光, 姜立泉, 李伟

南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (6) : 15-23.

PDF(6491 KB)
PDF(6491 KB)
南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (6) : 15-23. DOI: 10.12302/j.issn.1000-2006.202107031
专题报道(执行主编 施季森 尹佟明 陈金慧)

基于CRISPR/Cas9的毛果杨bHLH106转录因子的功能研究

作者信息 +

A functional study of bHLH106 transcription factor based on CRISPR/Cas9 in Populus trichocarpa

Author information +
文章历史 +

摘要

目的 采用CRISPR/Cas9基因编辑系统创制毛果杨(Populus trichocarpa)bHLH106(Basic Helix-Loop-Helix 106)基因的突变体,分析植株的表型特征,初步揭示PtrbHLH106基因在毛果杨木材形成过程中的功能。方法 基于前期对毛果杨野生型(WT)茎干的不同细胞类型(形成层、木质部和韧皮部细胞)RNA-seq数据,克隆得到一个在形成层及木质部较高表达的bHLH基因PtrbHLH106。采用CRISPR/Cas9基因编辑技术创制毛果杨PtrbHLH106的功能缺失突变体。对生长60、90、120 d的毛果杨ptrbhlh106突变体和WT植株进行表型观察;对生长120 d的植株各茎节进行石蜡切片,利用甲苯胺蓝染色观察并进行细胞统计分析。结果 获得毛果杨ptrbhlh106突变体;与WT相比,突变体植株的株高、地径无明显差异;在整个测量的生长周期中,第8茎节长度有缩短的趋势,茎节数量有增加的趋势;形成层细胞层数有增加的趋势但差异不显著,导管细胞孔径显著增大,纤维细胞数量显著减少。结论 ptrbhlh106突变体与WT植株在导管孔径和纤维细胞数量上存在差异,初步证明PtrbHLH106基因参与了调控毛果杨次生木质部的发育。

Abstract

【Objective】 We generated CRISPR-based mutants of PtrbHLH106 to explore its function in the wood formation of Populus trichocarpa. 【Method】 Based on the previous RNA-seq data of various cell types (cambium, xylem and phloem cells) of P. trichocarpa, we cloned a bHLH transcription factor, PtrbHLH106, which is highly expressed in the cambium and xylem. The CRISPR/Cas9 gene editing system was used to generate ptrbhlh106 mutants. Phenotype observations of ptrbhlh106 and wild-type (WT) plants grown for 60, 90 and 120 d were carried out. Paraffin sections of stem internodes of ptrbhlh106 and WT plants grown for 120 days were created, and toluidine blue staining was used for observation and statistical analyses of different wood cells. 【Result】 Phenotype observation showed that there were no significant differences in plant height and ground diameter. Compared to that in WT plants, the internodes length of 8th stem reduced, total number of stem internodes increased, and the layer of cambium cells increased in mutants. However, the differences in the above indexes were not significant. In addition, the lumen area of per vessel increased, and the number of fiber cells decreased significantly in ptrbhlh106. 【Conclusion】 The phenotypic differences between ptrbhlh106 mutants and WT plants showed that PtrbHLH106 is involved in the regulation of secondary xylem development in P. trichocarpa.

关键词

毛果杨 / 次生木质部发育 / CRISPR/Cas9基因编辑 / PtrbHLH106转录因子

Key words

Populus trichocarpa / secondary xylem development / CRISPR/Cas9 gene editing system / PtrbHLH106 transcription factor

引用本文

导出引用
孙佳彤, 国艳娇, 李爽, . 基于CRISPR/Cas9的毛果杨bHLH106转录因子的功能研究[J]. 南京林业大学学报(自然科学版). 2021, 45(6): 15-23 https://doi.org/10.12302/j.issn.1000-2006.202107031
SUN Jiatong, GUO Yanjiao, LI Shuang, et al. A functional study of bHLH106 transcription factor based on CRISPR/Cas9 in Populus trichocarpa[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2021, 45(6): 15-23 https://doi.org/10.12302/j.issn.1000-2006.202107031
中图分类号: S792.11;Q943.2   

参考文献

[1]
NULL. Esau’s plant anatomy:meristems,cells,and tissues of the plant body: their structure,function,and development[J]. Choice Rev Online, 2007, 44(7):44-3861.DOI: 10.5860/choice.44-3861.
[2]
李慧, 郭晓蕊, 刘雅琳, 等. 木材形成过程中次生壁沉积和细胞程序性死亡的分子调控机制[J]. 中国科学(生命科学), 2020, 50(2):123-135.
LI H, GUO X R, LIU Y L, et al. The molecular mechanism in secondary wall deposition and programmed cell death of wood formation[J]. Sci Sin (Vitae), 2020, 50(2):123-135.DOI: 10.1360/SSv-2019-0133.
[3]
EASU K. Plant anatomy[M]. New York: John Wiley & Sons, 1964.
[4]
MCCARTHY R L, ZHONG R, YE Z H. Secondary wall NAC binding element (SNBE),a key Cis-acting element required for target gene activation by secondary wall NAC master switches[J]. Plant Signal Behav, 2011, 6(9):1282-1285.DOI: 10.4161/psb.6.9.16402.
[5]
LIN Y C, LI W, SUN Y H, et al. SND1 transcription factor-directed quantitative functional hierarchical genetic regulatory network in wood formation in Populus trichocarpa[J]. Plant Cell, 2013, 25(11):4324-4341.DOI: 10.1105/tpc.113.117697.
[6]
CHEN H, WANG J P, LIU H Z, et al. Hierarchical transcription factor and chromatin binding network for wood formation in Populus trichocarpa[J]. Plant Cell, 2019, 31(3):602-626.DOI: 10.1105/tpc.18.00620.
[7]
文静, 王春涛, 杨永平. 植物木质部次生细胞壁加厚调控的研究进展[J]. 西南林业大学学报(自然科学), 2021, 41(2):182-188.
WEN J, WANG C T, YANG Y P. Advances in regulation of xylem secondary cell wall thickening in plants[J]. J Southwest For Univ (Nat Sci), 2021, 41(2):182-188.DOI: 10.11929/j.swfu.201909077.
[8]
HEIM M A, JAKOBY M, WERBER M, et al. The basic helix-loop-helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity[J]. Mol Biol Evol, 2003, 20(5):735-747.DOI: 10.1093/molbev/msg088.
[9]
NAKATA M, MITSUDA N, HERDE M, et al. A bHLH-type transcription factor,aba-inducible BHLH-type Transcription Factor/JA-Associated MYC2-Like1,Acts as a repressor to negatively regulate jasmonate signaling in Arabidopsis[J]. Plant Cell, 2013, 25(5):1641-1656.DOI: 10.1105/tpc.113.111112.
[10]
QI T, HUANG H, WU D, et al. Arabidopsis DELLA and JAZ proteins bind the WD-repeat/bHLH/MYB complex to modulate gibberellin and jasmonate signaling synergy[J]. Plant Cell, 2014, 26(3):1118-1133.DOI: 10.1105/tpc.113.121731.
[11]
NI M, TEPPERMAN J M, QUAIL P H. PIF3,a phytochrome-interacting factor necessary for normal photoinduced signal transduction,is a novel basic helix-loop-helix protein[J]. Cell, 1998, 95(5):657-667.DOI: 10.1016/s0092-8674(00)81636-0.
[12]
HUQ E, QUAIL P H. PIF4,a phytochrome-interacting bHLH factor,functions as a negative regulator of phytochrome B signaling in Arabidopsis[J]. EMBO J, 2002, 21(10):2441-2450.DOI: 10.1093/emboj/21.10.2441.
[13]
ABE H, URAO T, ITO T, et al. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling[J]. Plant Cell, 2003, 15(1):63-78.DOI: 10.1105/tpc.006130.
[14]
WANG Y, JIANG C J, LI Y Y, et al. CsICE1 and CsCBF1:two transcription factors involved in cold responses in Camellia sinensis[J]. Plant Cell Rep, 2012, 31(1):27-34.DOI: 10.1007/s00299-011-1136-5.
[15]
AHMAD A, NIWA Y, GOTO S, et al. bHLH106 integrates functions of multiple genes through their G-box to confer salt tolerance on Arabidopsis[J]. PLoS One, 2015, 10(5):e0126872.DOI: 10.1371/journal.pone.0126872.
[16]
OHASHI-ITO K, MATSUKAWA M, FUKUDA H. An atypical bHLH transcription factor regulates early xylem development downstream of auxin[J]. Plant Cell Physiol, 2013, 54(3):398-405.DOI: 10.1093/pcp/pct013.
[17]
LIU Z H, CHEN Y, WANG N N, et al. A basic helix-loop-helix protein (GhFP1) promotes fibre elongation of cotton (Gossypium hirsutum) by modulating brassinosteroid biosynjournal and signalling[J]. New Phytol, 2020, 225(6):2439-2452.DOI: 10.1111/nph.16301.
[18]
CASSAN-WANG H, GOUÉ N, SAIDI M N, et al. Identification of novel transcription factors regulating secondary cell wall formation in Arabidopsis[J]. Front Plant Sci, 2013, 4:189.DOI: 10.3389/fpls.2013.00189.
[19]
DE RYBEL B, MÖLLER B, YOSHIDA S, et al. A bHLH complex controls embryonic vascular tissue establishment and indeterminate growth in Arabidopsis[J]. Dev Cell, 2013, 24(4):426-437.DOI: 10.1016/j.devcel.2012.12.013.
[20]
OHASHI-ITO K, SAEGUSA M, IWAMOTO K, et al. A bHLH complex activates vascular cell division via cytokinin action in root apical meristem[J]. Curr Biol, 2014, 24(17):2053-2058.DOI: 10.1016/j.cub.2014.07.050.
[21]
KNOTT G J, DOUDNA J A. CRISPR-Cas guides the future of genetic engineering[J]. Science, 2018, 361(6405):866-869.DOI: 10.1126/science.aat5011.
[22]
林萌萌, 李春娟, 闫彩霞, 等. CRISPR/Cas9基因编辑技术在作物中的应用[J]. 核农学报, 2021, 35(6):1329-1339.
LIN M M, LI C J, YAN C X, et al. Application of CRISPR/Cas9 gene editing technology in crops[J]. J Nucl Agric Sci, 2021, 35(6):1329-1339.DOI: 10.11869/j.issn.100-8551.2021.06.1329.
[23]
JINEK M, CHYLINSKI K, FONFARA I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096):816-821.DOI: 10.1126/science.1225829.
[24]
BORTESI L, FISCHER R. The CRISPR/Cas9 system for plant genome editing and beyond[J]. Biotechnol Adv, 2015, 33(1):41-52.DOI: 10.1016/j.biotechadv.2014.12.006.
[25]
ZAFAR S A, ZAIDI S S, GABA Y, et al. Engineering abiotic stress tolerance via CRISPR/ Cas-mediated genome editing[J]. J Exp Bot, 2020, 71(2):470-479.DOI: 10.1093/jxb/erz476.
[26]
KIEU N P, LENMAN M, WANG E S, et al. Mutations introduced in susceptibility genes through CRISPR/Cas9 genome editing confer increased late blight resistance in potatoes[J]. Sci Rep, 2021, 11(1):4487.DOI: 10.1038/s41598-021-83972-w.
[27]
DE MEESTER B, MADARIAGA CALDERÓN B, DE VRIES L, et al. Tailoring poplar lignin without yield penalty by combining a null and haploinsufficient CINNAMOYL-CoA REDUCTASE2 allele[J]. Nat Commun, 2020, 11(1):5020.DOI: 10.1038/s41467-020-18822-w.
[28]
FAN D, LIU T, LI C, et al. Efficient CRISPR/Cas9-mediated targeted mutagenesis in Populus in the first generation[J]. Sci Rep, 2015, 5:12217.DOI: 10.1038/srep12217.
[29]
林娇娇. 毛果杨PtrVCS2基因在木材形成中的功能研究[D]. 哈尔滨:东北林业大学, 2020.
LIN J J. Function analysis of PtrVCS2 gene in wood formation in Populus trichocarpa[D]. Harbin:Northeast Forestry University, 2020.
[30]
毛昱力. 毛果杨PtrDLTPtrWOX4基因在维管形成层发育中的功能解析[D]. 哈尔滨:东北林业大学, 2020.
MAO Y L. Functional analysis of PtrDLT and PtrWOX4 genes in the development of vascular cambium in Populus trichocarpa[D]. Harbin:Northeast Forestry University, 2020.
[31]
LI S, ZHEN C, XU W, et al. Simple,rapid and efficient transformation of genotype Nisqually-1:a basic tool for the first sequenced model tree[J]. Sci Rep, 2017, 7(1):2638.DOI: 10.1038/s41598-017-02651-x.
[32]
WANG Z F, MAO Y L, GUO Y J, et al. MYB transcription Factor161 mediates feedback regulation of secondary wall-associated NAC: domain1 family genes for wood formation[J]. Plant Physiol, 2020, 184(3):1389-1406.DOI: 10.1104/pp.20.01033.
[33]
OSAKABE Y, LIANG Z, REN C, et al. CRISPR-Cas9-mediated genome editing in apple and grapevine[J]. Nat Protoc, 2018, 13(12):2844-2863.DOI: 10.1038/s41596-018-0067-9.
[34]
NISHITANI C, HIRAI N, KOMORI S, et al. Efficient genome editing in apple using a CRISPR/Cas9 system[J]. Sci Rep, 2016, 6:31481.DOI: 10.1038/srep31481.
[35]
LI S, LIN Y J, WANG P, et al. The AREB1 transcription factor influences histone acetylation to regulate drought responses and tolerance in Populus trichocarpa[J]. Plant Cell, 2019, 31(3):663-686.DOI: 10.1105/tpc.18.00437.
[36]
ZHU H, LI C, GAO C. Applications of CRISPR-Cas in agriculture and plant biotechnology[J]. Nat Rev Mol Cell Biol, 2020, 21(11):661-677.DOI: 10.1038/s41580-020-00288-9.
[37]
LI G, SRETENOVIC S, EISENSTEIN E, et al. Highly efficient C-to-T and A-to-G base editing in a Populus hybrid[J]. Plant Biotechnol J, 2021, 19(6):1086-1088.DOI: 10.1111/pbi.13581.
[38]
KUBO M, UDAGAWA M, NISHIKUBO N, et al. Transcription switches for protoxylem and metaxylem vessel formation[J]. Genes Dev, 2005, 19(16):1855-1860.DOI: 10.1101/gad.1331305.
[39]
沈方圆, 王岚春, 李校. 欧洲山杨bHLH转录因子家族全基因组分析[J]. 四川大学学报(自然科学版), 2021, 58(3):179-187.
SHEN F Y, WANG L C, LI X. Genome-wide analysis of the bHLH transcription factor family in Populus tremula[J]. J Sichuan Univ (Nat Sci Ed), 2021, 58(3):179-187.DOI: 10.19907/j.0490-6756.2021.036003.
[40]
ZHANG J, XIE M, TUSKAN G A, et al. Recent advances in the transcriptional regulation of secondary cell wall biosynjournal in the woody plants[J]. Front Plant Sci, 2018, 9:1535.DOI: 10.3389/fpls.2018.01535.
[41]
李少锋. 林木木材形成机制及材性改良研究进展[J]. 温带林业研究, 2019, 2(2):40-47.
LI S F. Wood formation mechanism and properties improvement in forest trees[J]. J Temp For Res, 2019, 2(2):40-47.DOI: 10.3969/j.issn.2096-4900.2019.02.007.
[42]
ZOBEL B J, JETT J B. Genetics of wood production[M]. Berlin,Heidelberg:Springer, 1995.DOI: 10.1007/978-3-642-79514-5.
[43]
康向阳. 林木遗传育种研究进展[J]. 南京林业大学学报(自然科学版), 2020, 44(3):1-10.
KANG X Y. Research progress of forest genetics and tree breeding[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(3):1-10.DOI: 10.3969/j.issn.1000-2006.202002033.

基金

国家自然科学基金青年科学基金项目(32001331)
中央高校基本科研业务费专项资金项目(2572018CL02)

编辑: 吴祝华

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
PDF(6491 KB)

Accesses

Citation

Detail

段落导航
相关文章

/