南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (2): 63-70.doi: 10.12302/j.issn.1000-2006.202109030
所属专题: 第二届中国林草计算机大会论文精选
• 专题报道Ⅱ:第二届中国林草计算机大会论文精选(执行主编 李凤日) • 上一篇 下一篇
棘玉1(), 尹显明1, 严恩萍1, 蒋佳敏1, 彭邵锋2, 莫登奎1,*()
收稿日期:
2021-09-15
接受日期:
2021-11-11
出版日期:
2022-03-30
发布日期:
2022-04-08
通讯作者:
莫登奎
基金资助:
JI Yu1(), YIN Xianming1, YAN Enping1, JIANG Jiamin1, PENG Shaofeng2, MO Dengkui1,*()
Received:
2021-09-15
Accepted:
2021-11-11
Online:
2022-03-30
Published:
2022-04-08
Contact:
MO Dengkui
摘要:
【目的】为实现油茶果实尺寸及大小分布的快速获取,提出一种基于相机拍摄的油茶果形状特征参数批量化提取方法。【方法】首先将采摘油茶果摆放于含刻度尺的背景板,利用相机快速获取油茶果图像并进行校正;然后利用Mask R-CNN模型对图像油茶果进行快速检测计数,根据生成的掩码采用椭圆拟合法统计油茶果特征参数(长轴长、短轴长、面积、周长)的像元个数;最后结合背景板刻度尺计算的像元大小,获取油茶果特征参数,同时利用实测值进行精度验证。【结果】Mask R-CNN模型的平均识别准确率和召回率分别为99.55%和91.19%,测度值为95.22%,满足用于统计油茶果形状特征参数的要求。对油茶果面积的估测精度最高,决定系数(R2)、平均绝对误差(MAE)、均方根误差(RMSE)分别为0.999 0、10.75 mm2、14.88 mm2;其次为周长和长轴长,短轴长的估测精度最低,其R2、MAE、RMSE分别为0.864 7、3.15 mm、3.74 mm。【结论】该方法实现了油茶果采摘后的快速准确计数以及形状特征参数的批量化提取,可为大量果实特征参数的快速准确检测提供参考,为指导油茶果实分级和快速测产提供科学依据。
中图分类号:
棘玉,尹显明,严恩萍,等. 基于相机拍照的油茶果形状特征提取研究[J]. 南京林业大学学报(自然科学版), 2022, 46(2): 63-70.
JI Yu, YIN Xianming, YAN Enping, JIANG Jiamin, PENG Shaofeng, MO Dengkui. Research on extraction of shape features of Camellia oleifera fruits based on camera photography[J].Journal of Nanjing Forestry University (Natural Science Edition), 2022, 46(2): 63-70.DOI: 10.12302/j.issn.1000-2006.202109030.
表1
油茶果形状特征参数变异"
统计量 statistic | 短轴长/mm short axis | 长轴长/mm long axis | 周长/mm perimeter | 面积/mm2 area |
---|---|---|---|---|
最小值min | 10.45 | 14.68 | 42.98 | 144.12 |
最大值max | 58.17 | 70.47 | 193.29 | 2 960.25 |
全距range | 47.72 | 55.79 | 150.31 | 2 816.13 |
平均值mean | 31.79 | 35.55 | 105.90 | 914.59 |
方差VAR | 38.01 | 35.84 | 350.47 | 101 726 |
标准差SD | 6.17 | 5.99 | 18.72 | 318.95 |
变异系数/%CV | 19.41 | 16.84 | 17.69 | 34.87 |
[1] | 周文才, 王仲伟, 董乐, 等. 浙江红花油茶种实性状多样性分析[J]. 南京林业大学学报(自然科学版), 2021, 45(2):51-59. |
ZHOU W C, WANG Z W, DONG L, et al. Analysis on the cha-racter diversity of fruit and seed of Camellia chekiangoleosa[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(2): 51-59. DOI: 10.12302/j.issn.1000-2006.202003040.
doi: 10.12302/j.issn.1000-2006.202003040 |
|
[2] | 陈永忠, 邓绍宏, 陈隆升, 等. 油茶产业发展新论[J]. 南京林业大学学报(自然科学版), 2020, 44(1):1-10. |
CHEN Y Z, DENG S H, CHEN L S, et al. A new view on the development of oil tea Camellia industry[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(1): 1-10. DOI: 10.3969/j.issn.1000-2006.201909033.
doi: 10.3969/j.issn.1000-2006.201909033 |
|
[3] | 迟诚, 康勇军. 扎实推动油茶产业实现高质量发展:全国油茶产业发展工作会议在江西赣州召开[J]. 中国林业产业, 2019(11): 10-11. |
CHI C, KANG Y J. Promote Camellia oil industry to achieve high-quality development: the national Camellia oil industry development conference was held in Ganzhou, Jiangxi province[J]. China For Ind, 2019 (11): 10-11. | |
[4] | 祝诗平, 卓佳鑫, 黄华, 等. 基于CNN的小麦籽粒完整性图像检测系统[J]. 农业机械学报, 2020, 51(5): 36-42. |
ZHU S P, ZHUO J X, HUANG H, et al. Wheat grain integrity image detection system based on CNN[J]. Trans Chin Soc Agric Mach, 2020, 51(5): 36-42. DOI: 10.6041/j.issn.1000-1298.2020.05.004.
doi: 10.6041/j.issn.1000-1298.2020.05.004 |
|
[5] | 高霁月, 倪建功, 杨昊岩, 等. 基于数据平衡和深度学习的开心果品质视觉检测方法[J]. 农业机械学报, 2021, 52(7):367-372. |
GAO J Y, NI J G, YANG H Y, et al. Pistachio visual detection based on data balance and deep learning[J]. Trans Chin Soc Agric Mach, 2021, 52(7):367-372. DOI: 10.6041 /j.issn.1000-1298.2021.07.040.
doi: 10.6041 /j.issn.1000-1298.2021.07.040 |
|
[6] |
LU J, SANG N. Detecting citrus fruits and occlusion recovery under natural illumination conditions[J]. Comput Electron Agric, 2015, 110: 121-130. DOI: 10.1016/j.compag.2014.10.016.
doi: 10.1016/j.compag.2014.10.016 |
[7] | 张习之, 李立君. 基于改进卷积自编码机的油茶果图像识别研究[J]. 林业工程学报, 2019, 4(3): 118-124. |
ZHANG X Z, LI L J. Research of image recognition of Camellia oleifera fruit based on improved convolutional auto-encoder[J]. J For Eng, 2019, 4(3):118-124. DOI: 10.13360/j.issn.2096-1359.2019.03.018.
doi: 10.13360/j.issn.2096-1359.2019.03.018 |
|
[8] |
LI J B, LUO W, WANG Z L, et al. Early detection of decay on apples using hyperspectral reflectance imaging combining both principal component analysis and improved watershed segmentation method[J]. Postharvest Biol Technol, 2019, 149: 235-246. DOI: 10.1016/j.postharvbio.2018.12.007.
doi: 10.1016/j.postharvbio.2018.12.007 |
[9] |
VERMEULEN P, SUMAN M, FERNÁNDEZ PIERNA J A, et al. Discrimination between durum and common wheat kernels using near infrared hyperspectral imaging[J]. J Cereal Sci, 2018, 84: 74-82. DOI: 10.1016/j.jcs.2018.10.001.
doi: 10.1016/j.jcs.2018.10.001 |
[10] | 黄小玉, 李光林, 马驰, 等. 基于改进判别区域特征融合算法的近色背景绿色桃子识别[J]. 农业工程学报, 2018, 34(23): 142-148. |
HUANG X Y, LI G L, MA C, et al. Green peach re-cognition based on improved discriminative regional feature integration algorithm in similar background[J]. Trans Chin Soc Agric Eng, 2018, 34(23): 142-148. DOI: 10.11975/j.issn.1002-6819.2018.23.017.
doi: 10.11975/j.issn.1002-6819.2018.23.017 |
|
[11] | 王津京, 赵德安, 姬伟, 等. 采摘机器人基于支持向量机苹果识别方法[J]. 农业机械学报, 2009, 40(1): 148-151,147. |
WANG J J, ZHAO D A, JI W, et al. Apple fruit recognition based on support vector machine using in harvesting robot[J]. Trans Chin Soc Agric Mach, 2009, 40(1): 148-151,147. | |
[12] | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[R]. 3rd Int Conf Learn Represent ICLR 2015 Conf Track Proc, 2015. |
[13] |
PRZYBYLO J, JABLONSKI M. Using deep convolutional neural network for oak acorn viability recognition based on color images of their sections[J]. Comput Electron Agric, 2019, 156:490-499. DOI: 10.1016/j.compag.2018.12.001.
doi: 10.1016/j.compag.2018.12.001 |
[14] |
PARK K, HONG Y K, KIM G H, et al. Classification of apple leaf conditions in hyper-spectral images for diagnosis of Marssonina blotch using mRMR and deep neural network[J]. Comput Electron Agric, 2018, 148:179-187. DOI: 10.1016/j.compag.2018.02.025.
doi: 10.1016/j.compag.2018.02.025 |
[15] | 谢为俊, 丁冶春, 王凤贺, 等. 基于卷积神经网络的油茶籽完整性识别方法[J]. 农业机械学报, 2020, 51(7):13-21. |
XIE W J, DING Y C, WANG F H, et al. Integrity recognition of Camellia oleifera seeds based on convolutional neural network[J]. Trans Chin Soc Agric Mach, 2020, 51(7):13-21. DOI: 10.6041/j.issn.1000-1298.2020.07.002.
doi: 10.6041/j.issn.1000-1298.2020.07.002 |
|
[16] | 刘忠伟, 戚大伟. 基于卷积神经网络的树种识别研究[J]. 森林工程, 2020, 36(1):33-38. |
LIU Z W, QI D W. Study on tree species identification based on convolution neural network[J]. Forest Engineering, 2020, 36(1): 33-38. | |
[17] | 李昕, 陈泽君, 李立君, 等. 基于偏好免疫网络和SVM算法的油茶果多特征识别[J]. 农业工程学报, 2020, 36(22): 205-213. |
LI X, CHEN Z J, LI L J, et al. Recognition of Camellia multi-features based on preference artificial immune network and support vector machine[J]. Trans Chin Soc Agric Eng, 2020, 36(22):205-213. DOI: 10.11975/j.issn.1002-6819.2020.22.023.
doi: 10.11975/j.issn.1002-6819.2020.22.023 |
|
[18] | 段宇飞, 皇甫思思, 王焱清, 等. 基于机器视觉的油茶果果壳与茶籽分选方法研究[J]. 中国农机化学报, 2020, 41(6):171-178. |
DUAN Y F, HUANGPU S S, WANG Y Q, et al. Sorting method of seeds and shells of the Camellia oleifera fruit based on machine vision[J]. J Chin Agric Mech, 2020, 41(6):171-178. DOI: 10.13733/j.jcam.issn.2095-5553.2020.06.028.
doi: 10.13733/j.jcam.issn.2095-5553.2020.06.028 |
|
[19] | 谢锋云, 周建民, 江炜文, 等. 基于隐马尔科夫模型的苹果分级方法研究[J]. 食品与机械, 2016, 32(7): 29-31,111. |
XIE F Y, ZHOU J M, JIANG W W, et al. Study on method of apple grading based on hidden Markov model[J]. Food Mach, 2016, 32(7): 29-31,111. DOI: 10.13652/j.issn.1003-5788.2016.07.007.
doi: 10.13652/j.issn.1003-5788.2016.07.007 |
|
[20] |
KUPE M, SAYıNCı B, DEMIR B, et al. Morphological characteristics of grapevine cultivars and closed contour analysis with elliptic Fourier descriptors[J]. Plants, 2021, 10(7): 1350. DOI: 10.3390/plants10071350.
doi: 10.3390/plants10071350 |
[21] |
DEMIR B, SAYINCI B, ÇETIN N, et al. Shape discrimination of almond cultivars by elliptic Fourier descriptors[J]. Erwerbs Obstbau, 2019, 61(3): 245-256. DOI: 10.1007/s10341-019-00423-7.
doi: 10.1007/s10341-019-00423-7 |
[22] | 左兴健, 武广伟. 猕猴桃自动分级设备设计与试验[J]. 农业机械学报, 2014, 45(S1): 287-295. |
ZUO X J, WU G W. Design and experiment on automatic grading machine for Kiwi[J]. Trans Chin Soc Agric Mach, 2014, 45(S1): 287-295. DOI: 10.6041/j.issn.1000-1298.2014.S0.047.
doi: 10.6041/j.issn.1000-1298.2014.S0.047 |
|
[23] | 李立君, 阳涵疆. 基于改进凸壳理论的遮挡油茶果定位检测算法[J]. 农业机械学报, 2016, 47(12):285-292,346. |
LI L J, YANG H J. Revised detection and localization algorithm for Camellia oleifera fruits based on Convex Hull theory[J]. Trans Chin Soc Agric Mach, 2016, 47(12):285-292,346. DOI: 10.6041/j.issn.1000-1298.2016.12.035.
doi: 10.6041/j.issn.1000-1298.2016.12.035 |
|
[24] |
LIN G C, TANG Y C, ZOU X J, et al. Fruit detection in natural environment using partial shape matching and probabilistic Hough transform[J]. Precision Agric, 2020, 21(1): 160-177. DOI: 10.1007/s11119-019-09662-w.
doi: 10.1007/s11119-019-09662-w |
[25] | 李昕, 李立君, 高自成, 等. 改进类圆随机Hough变换及其在油茶果实遮挡识别中的应用[J]. 农业工程学报, 2013, 29(1):164-170. |
LI X, LI L J, GAO Z C, et al. Revised quasi-circular randomized Hough transform and its application in Camellia-fruit recognition[J]. Trans Chin Soc Agric Eng, 2013, 29(1): 164-170. DOI: 10.3969/j.issn.1002-6819.2013.01.022.
doi: 10.3969/j.issn.1002-6819.2013.01.022 |
|
[26] |
CHEN X Y, WANG S A, ZHANG B Q, et al. Multi-feature fusion tree trunk detection and orchard mobile robot localization using camera/ultrasonic sensors[J]. Comput Electron Agric, 2018, 147:91-108. DOI: 10.1016/j.compag.2018.02.009.
doi: 10.1016/j.compag.2018.02.009 |
[27] | 闫蓓, 王斌, 李媛. 基于最小二乘法的椭圆拟合改进算法[J]. 北京航空航天大学学报, 2008, 34(3): 295-298. |
YAN B, WANG B, LI Y. Optimal ellipse fitting method based on least-square principle[J]. J Beijing Univ Aeronaut Astronaut, 2008, 34(3): 295-298. DOI: 10.13700/j.bh.1001-5965.2008.03.001.
doi: 10.13700/j.bh.1001-5965.2008.03.001 |
|
[28] | 黄汉平. 椭圆周长的计算[J]. 洪都科技, 1978(3): 19-26,11. |
HUANG H P. The calculation of the circumference of an ellipse[J]. Hongdu Sci Technol, 1978(3):19-26,11. | |
[29] | 花伟成, 田佳格, 孙心雨, 等. 基于TLS数据的杨树削度方程建立及材积估算[J]. 南京林业大学学报(自然科学版), 2021, 45(4):41-48. |
HUA W C, TIAN J G, SUN X Y, et al. Assessing the sltem laper lunction and volume estimation of poplar ( Popu-lus) by terrestrial laser scanning[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(4):41-48. DOI: 10.12302/j.issn.1000-2006.202006023.1.
doi: 10.12302/j.issn.1000-2006.202006023.1 |
|
[30] | 程艳. 正态分布的应用研究[J]. 内蒙古煤炭经济, 2021(11):229-230. |
CHENG Y. Application research of normal distribution[J]. Inner Mongolia Coal Economy, 2021(11):229-230. DOI: 10.3969/j.issn.1008-0155.2021.11.111.
doi: 10.3969/j.issn.1008-0155.2021.11.111 |
|
[31] | 严恩萍, 棘玉, 尹显明, 等. 基于无人机影像自动检测冠层果的油茶快速估产方法[J]. 农业工程学报, 2021, 37(16): 39-46. |
YAN E P, JI Y, YIN X M, et al. Rapid estimation of camellia oleifera yield based on automatic detection of canopy fruits using UAV images[J]. Trans Chin Soc Agric Eng, 2021, 37(16): 39-46. DOI: 10.11975/j.issn.1002-6819.2021.16.006.
doi: 10.11975/j.issn.1002-6819.2021.16.006 |
|
[32] | 王丹丹, 何东健. 基于R-FCN深度卷积神经网络的机器人疏果前苹果目标的识别[J]. 农业工程学报, 2019, 35(3): 156-163. |
WANG D D, HE D J. Recognition of apple targets before fruits thinning by robot based on R-FCN deep convolution neural network[J]. Trans Chin Soc Agric Eng, 2019, 35(3): 156-163. DOI: 10.11975/j.issn.1002-6819.2019.03.020.
doi: 10.11975/j.issn.1002-6819.2019.03.020 |
|
[33] | 赵立新, 侯发东, 吕正超, 等. 基于迁移学习的棉花叶部病虫害图像识别[J]. 农业工程学报, 2020, 36(7): 184-191. |
ZHAO L X, HOU F D, LYU Z C, et al. Image recognition of cotton leaf diseases and pests based on transfer learning[J]. Trans Chin Soc Agric Eng, 2020, 36(7): 184-191. DOI: 10.11975/j.issn.1002-6819.2020.07.021.
doi: 10.11975/j.issn.1002-6819.2020.07.021 |
|
[34] | 陈永忠, 许彦明, 张震, 等. 油茶果实主要数量性状分析及育种指标体系筛选[J]. 中南林业科技大学学报, 2021, 41(3):1-9. |
CHEN Y Z, XU Y M, ZHANG Z, et al. Analysis of fruit main quantitative traits and selection of breeding index in Camellia oleifera[J]. J Central South Univ For Technol, 2021, 41(3):1-9. DOI: 10.14067/j.cnki.1673-923x.2021.03.001.
doi: 10.14067/j.cnki.1673-923x.2021.03.001 |
|
[35] | 谢国俊, 曹其新, 刘建政, 等. 基于多方位视觉的果实形状特征的提取研究[J]. 农业工程学报, 2007, 23(7): 127-132. |
XIE G J, CAO Q X, LIU J Z, et al. Method for fruit shape feature acquisition based on multidirectional vision[J]. Trans Chin Soc Agric Eng, 2007, 23(7): 127-132. DOI: 10.3321/j.issn:1002-6819.2007.07.025.
doi: 10.3321/j.issn:1002-6819.2007.07.025 |
|
[36] | 张卫正, 徐武峰, 裘正军, 等. 基于多视角图像的植物叶片建模与曲面面积测量[J]. 农业机械学报, 2013, 44(7):229-234. |
ZHANG W Z, XU W F, QIU Z J, et al. Plant leaf modeling and surface area measuring based on multi-view images[J]. Trans Chin Soc Agric Mach, 2013, 44(7): 229-234. DOI: 10.6041/j.issn.1000-1298.2013.07.040.
doi: 10.6041/j.issn.1000-1298.2013.07.040 |
[1] | 向俊, 严恩萍, 姜镓伟, 宋亚斌, 韦维, 莫登奎. 基于全卷积神经网络和低分辨率标签的森林变化检测研究[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 187-195. |
[2] | 刘江, 张雁, 吕丹桔, 鲁静, 谢珊珊, 子佳丽, 陈旭, 赵友杰. 基于多视图集成的鸟鸣分类研究[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 23-30. |
[3] | 梁慧琳, 张青萍. 园林文化遗产三维数字化测绘与信息管理研究进展[J]. 南京林业大学学报(自然科学版), 2020, 44(5): 9-16. |
[4] | 林朝剑, 张广群, 杨洁, 徐鹏, 李英杰, 汪杭军. 基于迁移学习的林业业务图像识别[J]. 南京林业大学学报(自然科学版), 2020, 44(4): 215-221. |
[5] | 郝泉龄, 徐国祺, 王立海, 时小龙, 许明贤, 纪文文, 张广晖. 基于Logistic回归模型的红松立木腐朽分级预测[J]. 南京林业大学学报(自然科学版), 2020, 44(2): 150-158. |
[6] | 刘嘉政, 王雪峰, 王甜. 基于深度学习的树种图像自动识别[J]. 南京林业大学学报(自然科学版), 2020, 44(1): 138-144. |
[7] | 张青萍,梁慧琳,李卫正,杨梦珂,朱灵茜,黄安. 数字化测绘技术在私家园林中的应用研究[J]. 南京林业大学学报(自然科学版), 2018, 42(01): 1-6. |
[8] | 关明杰,王路,常馨曼. 杨木/酚醛树脂胶合界面相的荧光跟踪解析[J]. 南京林业大学学报(自然科学版), 2013, 37(05): 125-128. |
[9] | 贾永刚,冯谦*. 石膏刨花板电镜图像微观结构的定量分析[J]. 南京林业大学学报(自然科学版), 2010, 34(03): 121-125. |
[10] | 闵永军,朱柳建,朱华勇,徐兆军. 汽车前照灯测量误差修正系统的设计与实现[J]. 南京林业大学学报(自然科学版), 2010, 34(02): 107-110. |
[11] | 刘云飞1,薛联凤1,阮锡根1,于芬2. 竹材细胞壁晶区变化规律的研究[J]. 南京林业大学学报(自然科学版), 2006, 30(06): 66-68. |
[12] | 薛联凤1,刘云飞1,徐慧1,余观夏1,王福升2. 竹材细胞壁晶区变化的图像处理[J]. 南京林业大学学报(自然科学版), 2005, 29(05): 50-52. |
[13] | 郑加强. 基于计算机视觉的雾滴尺寸测量技术[J]. 南京林业大学学报(自然科学版), 2000, 24(06): 47-50. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||