基于相机拍照的油茶果形状特征提取研究

棘玉, 尹显明, 严恩萍, 蒋佳敏, 彭邵锋, 莫登奎

南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (2) : 63-70.

PDF(20913 KB)
PDF(20913 KB)
南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (2) : 63-70. DOI: 10.12302/j.issn.1000-2006.202109030
专题报道Ⅱ:第二届中国林草计算机大会论文精选(执行主编 李凤日)

基于相机拍照的油茶果形状特征提取研究

作者信息 +

Research on extraction of shape features of Camellia oleifera fruits based on camera photography

Author information +
文章历史 +

摘要

【目的】为实现油茶果实尺寸及大小分布的快速获取,提出一种基于相机拍摄的油茶果形状特征参数批量化提取方法。【方法】首先将采摘油茶果摆放于含刻度尺的背景板,利用相机快速获取油茶果图像并进行校正;然后利用Mask R-CNN模型对图像油茶果进行快速检测计数,根据生成的掩码采用椭圆拟合法统计油茶果特征参数(长轴长、短轴长、面积、周长)的像元个数;最后结合背景板刻度尺计算的像元大小,获取油茶果特征参数,同时利用实测值进行精度验证。【结果】Mask R-CNN模型的平均识别准确率和召回率分别为99.55%和91.19%,测度值为95.22%,满足用于统计油茶果形状特征参数的要求。对油茶果面积的估测精度最高,决定系数(R2)、平均绝对误差(MAE)、均方根误差(RMSE)分别为0.999 0、10.75 mm2、14.88 mm2;其次为周长和长轴长,短轴长的估测精度最低,其R2、MAE、RMSE分别为0.864 7、3.15 mm、3.74 mm。【结论】该方法实现了油茶果采摘后的快速准确计数以及形状特征参数的批量化提取,可为大量果实特征参数的快速准确检测提供参考,为指导油茶果实分级和快速测产提供科学依据。

Abstract

【Objective】Camellia oleifera, one of the four major woody oilseeds in the world, has a comprehensive utilization value. As a key rural industry in southern China, it plays an important role in the development of the agricultural economy. In recent years, with a vigorous support from the national government at all levels, the C. oleifera planting area has been expanding annually. Therefore, it is important to obtain information on the shapes of C. oleifera fruits quickly and accurately to determine the size distribution, guide fruit grading, and calculate rapid yield measurements. This paper proposes a batch extraction method for C. oleifera fruit shape feature parameters based on camera photography. 【Method】First, the picked C. oleifera fruits were placed on a background plate with a scale, using a camera to quickly obtain images of C. oleifera fruits and a correction of the geometric distortions produced by photography. Then, the Mask R-CNN model was used for a fast detection and counting of the C. oleifera fruits in the image. According to the generated mask, the number of pixels of the feature parameters (length of the long axis and short axis, area and perimeter) of the camellia fruits was counted using the elliptic fitting method. Finally, the image pixel size calculated with the help of the background plate scale was used to obtain the key parameters of the oil tea fruits, while the accuracy was verified using the actual measured values. 【Result】The average recognition accuracy and recall of the mask R-CNN model were 99.55% and 91.19%, respectively, and the F-measure value was 95.22%, showing that the method was suitable for describing C. oleifera fruit shape parameters statistically. The estimated accuracy of the area of the C. oleifera fruits was the highest with the coefficient of determination (R2), mean absolute error (MAE), and root mean square error (RMSE) of 0.999 0, 10.75 mm2, and 14.88 mm2, followed by the perimeter and length of the long axis, and the lowest accuracy of length of the the short axis with R2, MAE, and RMSE of 0.864 7, 3.15 mm, and 3.74 mm, respectively. 【Conclusion】The method achieved a rapid and accurate counting of C. oleifera fruits shape feature parameters after picking and batch extraction. Thus, the technique can rapidly and accurately detect a large number of fruit feature parameters and provide a scientific basis for the C. oleifera fruit grading and rapid yield measurement.

关键词

近景摄影 / 形状特征提取 / 图像处理 / 卷积神经网络 / 油茶果

Key words

close-range photogrammetry / shape feature extraction / image processing / convolutional neural network / Camellia oleifera fruit

引用本文

导出引用
棘玉, 尹显明, 严恩萍, . 基于相机拍照的油茶果形状特征提取研究[J]. 南京林业大学学报(自然科学版). 2022, 46(2): 63-70 https://doi.org/10.12302/j.issn.1000-2006.202109030
JI Yu, YIN Xianming, YAN Enping, et al. Research on extraction of shape features of Camellia oleifera fruits based on camera photography[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(2): 63-70 https://doi.org/10.12302/j.issn.1000-2006.202109030
中图分类号: TP391.41   

参考文献

[1]
周文才, 王仲伟, 董乐, 等. 浙江红花油茶种实性状多样性分析[J]. 南京林业大学学报(自然科学版), 2021, 45(2):51-59.
ZHOU W C, WANG Z W, DONG L, et al. Analysis on the cha-racter diversity of fruit and seed of Camellia chekiangoleosa[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(2): 51-59. DOI: 10.12302/j.issn.1000-2006.202003040.
[2]
陈永忠, 邓绍宏, 陈隆升, 等. 油茶产业发展新论[J]. 南京林业大学学报(自然科学版), 2020, 44(1):1-10.
CHEN Y Z, DENG S H, CHEN L S, et al. A new view on the development of oil tea Camellia industry[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(1): 1-10. DOI: 10.3969/j.issn.1000-2006.201909033.
[3]
迟诚, 康勇军. 扎实推动油茶产业实现高质量发展:全国油茶产业发展工作会议在江西赣州召开[J]. 中国林业产业, 2019(11): 10-11.
CHI C, KANG Y J. Promote Camellia oil industry to achieve high-quality development: the national Camellia oil industry development conference was held in Ganzhou, Jiangxi province[J]. China For Ind, 2019 (11): 10-11.
[4]
祝诗平, 卓佳鑫, 黄华, 等. 基于CNN的小麦籽粒完整性图像检测系统[J]. 农业机械学报, 2020, 51(5): 36-42.
ZHU S P, ZHUO J X, HUANG H, et al. Wheat grain integrity image detection system based on CNN[J]. Trans Chin Soc Agric Mach, 2020, 51(5): 36-42. DOI: 10.6041/j.issn.1000-1298.2020.05.004.
[5]
高霁月, 倪建功, 杨昊岩, 等. 基于数据平衡和深度学习的开心果品质视觉检测方法[J]. 农业机械学报, 2021, 52(7):367-372.
GAO J Y, NI J G, YANG H Y, et al. Pistachio visual detection based on data balance and deep learning[J]. Trans Chin Soc Agric Mach, 2021, 52(7):367-372. DOI: 10.6041 /j.issn.1000-1298.2021.07.040.
[6]
LU J, SANG N. Detecting citrus fruits and occlusion recovery under natural illumination conditions[J]. Comput Electron Agric, 2015, 110: 121-130. DOI: 10.1016/j.compag.2014.10.016.
[7]
张习之, 李立君. 基于改进卷积自编码机的油茶果图像识别研究[J]. 林业工程学报, 2019, 4(3): 118-124.
ZHANG X Z, LI L J. Research of image recognition of Camellia oleifera fruit based on improved convolutional auto-encoder[J]. J For Eng, 2019, 4(3):118-124. DOI: 10.13360/j.issn.2096-1359.2019.03.018.
[8]
LI J B, LUO W, WANG Z L, et al. Early detection of decay on apples using hyperspectral reflectance imaging combining both principal component analysis and improved watershed segmentation method[J]. Postharvest Biol Technol, 2019, 149: 235-246. DOI: 10.1016/j.postharvbio.2018.12.007.
[9]
VERMEULEN P, SUMAN M, FERNÁNDEZ PIERNA J A, et al. Discrimination between durum and common wheat kernels using near infrared hyperspectral imaging[J]. J Cereal Sci, 2018, 84: 74-82. DOI: 10.1016/j.jcs.2018.10.001.
[10]
黄小玉, 李光林, 马驰, 等. 基于改进判别区域特征融合算法的近色背景绿色桃子识别[J]. 农业工程学报, 2018, 34(23): 142-148.
HUANG X Y, LI G L, MA C, et al. Green peach re-cognition based on improved discriminative regional feature integration algorithm in similar background[J]. Trans Chin Soc Agric Eng, 2018, 34(23): 142-148. DOI: 10.11975/j.issn.1002-6819.2018.23.017.
[11]
王津京, 赵德安, 姬伟, 等. 采摘机器人基于支持向量机苹果识别方法[J]. 农业机械学报, 2009, 40(1): 148-151,147.
WANG J J, ZHAO D A, JI W, et al. Apple fruit recognition based on support vector machine using in harvesting robot[J]. Trans Chin Soc Agric Mach, 2009, 40(1): 148-151,147.
[12]
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[R]. 3rd Int Conf Learn Represent ICLR 2015 Conf Track Proc, 2015.
[13]
PRZYBYLO J, JABLONSKI M. Using deep convolutional neural network for oak acorn viability recognition based on color images of their sections[J]. Comput Electron Agric, 2019, 156:490-499. DOI: 10.1016/j.compag.2018.12.001.
[14]
PARK K, HONG Y K, KIM G H, et al. Classification of apple leaf conditions in hyper-spectral images for diagnosis of Marssonina blotch using mRMR and deep neural network[J]. Comput Electron Agric, 2018, 148:179-187. DOI: 10.1016/j.compag.2018.02.025.
[15]
谢为俊, 丁冶春, 王凤贺, 等. 基于卷积神经网络的油茶籽完整性识别方法[J]. 农业机械学报, 2020, 51(7):13-21.
XIE W J, DING Y C, WANG F H, et al. Integrity recognition of Camellia oleifera seeds based on convolutional neural network[J]. Trans Chin Soc Agric Mach, 2020, 51(7):13-21. DOI: 10.6041/j.issn.1000-1298.2020.07.002.
[16]
刘忠伟, 戚大伟. 基于卷积神经网络的树种识别研究[J]. 森林工程, 2020, 36(1):33-38.
LIU Z W, QI D W. Study on tree species identification based on convolution neural network[J]. Forest Engineering, 2020, 36(1): 33-38.
[17]
李昕, 陈泽君, 李立君, 等. 基于偏好免疫网络和SVM算法的油茶果多特征识别[J]. 农业工程学报, 2020, 36(22): 205-213.
LI X, CHEN Z J, LI L J, et al. Recognition of Camellia multi-features based on preference artificial immune network and support vector machine[J]. Trans Chin Soc Agric Eng, 2020, 36(22):205-213. DOI: 10.11975/j.issn.1002-6819.2020.22.023.
[18]
段宇飞, 皇甫思思, 王焱清, 等. 基于机器视觉的油茶果果壳与茶籽分选方法研究[J]. 中国农机化学报, 2020, 41(6):171-178.
DUAN Y F, HUANGPU S S, WANG Y Q, et al. Sorting method of seeds and shells of the Camellia oleifera fruit based on machine vision[J]. J Chin Agric Mech, 2020, 41(6):171-178. DOI: 10.13733/j.jcam.issn.2095-5553.2020.06.028.
[19]
谢锋云, 周建民, 江炜文, 等. 基于隐马尔科夫模型的苹果分级方法研究[J]. 食品与机械, 2016, 32(7): 29-31,111.
XIE F Y, ZHOU J M, JIANG W W, et al. Study on method of apple grading based on hidden Markov model[J]. Food Mach, 2016, 32(7): 29-31,111. DOI: 10.13652/j.issn.1003-5788.2016.07.007.
[20]
KUPE M, SAYıNCı B, DEMIR B, et al. Morphological characteristics of grapevine cultivars and closed contour analysis with elliptic Fourier descriptors[J]. Plants, 2021, 10(7): 1350. DOI: 10.3390/plants10071350.
[21]
DEMIR B, SAYINCI B, ÇETIN N, et al. Shape discrimination of almond cultivars by elliptic Fourier descriptors[J]. Erwerbs Obstbau, 2019, 61(3): 245-256. DOI: 10.1007/s10341-019-00423-7.
[22]
左兴健, 武广伟. 猕猴桃自动分级设备设计与试验[J]. 农业机械学报, 2014, 45(S1): 287-295.
ZUO X J, WU G W. Design and experiment on automatic grading machine for Kiwi[J]. Trans Chin Soc Agric Mach, 2014, 45(S1): 287-295. DOI: 10.6041/j.issn.1000-1298.2014.S0.047.
[23]
李立君, 阳涵疆. 基于改进凸壳理论的遮挡油茶果定位检测算法[J]. 农业机械学报, 2016, 47(12):285-292,346.
LI L J, YANG H J. Revised detection and localization algorithm for Camellia oleifera fruits based on Convex Hull theory[J]. Trans Chin Soc Agric Mach, 2016, 47(12):285-292,346. DOI: 10.6041/j.issn.1000-1298.2016.12.035.
[24]
LIN G C, TANG Y C, ZOU X J, et al. Fruit detection in natural environment using partial shape matching and probabilistic Hough transform[J]. Precision Agric, 2020, 21(1): 160-177. DOI: 10.1007/s11119-019-09662-w.
[25]
李昕, 李立君, 高自成, 等. 改进类圆随机Hough变换及其在油茶果实遮挡识别中的应用[J]. 农业工程学报, 2013, 29(1):164-170.
LI X, LI L J, GAO Z C, et al. Revised quasi-circular randomized Hough transform and its application in Camellia-fruit recognition[J]. Trans Chin Soc Agric Eng, 2013, 29(1): 164-170. DOI: 10.3969/j.issn.1002-6819.2013.01.022.
[26]
CHEN X Y, WANG S A, ZHANG B Q, et al. Multi-feature fusion tree trunk detection and orchard mobile robot localization using camera/ultrasonic sensors[J]. Comput Electron Agric, 2018, 147:91-108. DOI: 10.1016/j.compag.2018.02.009.
[27]
闫蓓, 王斌, 李媛. 基于最小二乘法的椭圆拟合改进算法[J]. 北京航空航天大学学报, 2008, 34(3): 295-298.
YAN B, WANG B, LI Y. Optimal ellipse fitting method based on least-square principle[J]. J Beijing Univ Aeronaut Astronaut, 2008, 34(3): 295-298. DOI: 10.13700/j.bh.1001-5965.2008.03.001.
[28]
黄汉平. 椭圆周长的计算[J]. 洪都科技, 1978(3): 19-26,11.
HUANG H P. The calculation of the circumference of an ellipse[J]. Hongdu Sci Technol, 1978(3):19-26,11.
[29]
花伟成, 田佳格, 孙心雨, 等. 基于TLS数据的杨树削度方程建立及材积估算[J]. 南京林业大学学报(自然科学版), 2021, 45(4):41-48.
HUA W C, TIAN J G, SUN X Y, et al. Assessing the sltem laper lunction and volume estimation of poplar ( Popu-lus) by terrestrial laser scanning[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(4):41-48. DOI: 10.12302/j.issn.1000-2006.202006023.1.
[30]
程艳. 正态分布的应用研究[J]. 内蒙古煤炭经济, 2021(11):229-230.
CHENG Y. Application research of normal distribution[J]. Inner Mongolia Coal Economy, 2021(11):229-230. DOI: 10.3969/j.issn.1008-0155.2021.11.111.
[31]
严恩萍, 棘玉, 尹显明, 等. 基于无人机影像自动检测冠层果的油茶快速估产方法[J]. 农业工程学报, 2021, 37(16): 39-46.
YAN E P, JI Y, YIN X M, et al. Rapid estimation of camellia oleifera yield based on automatic detection of canopy fruits using UAV images[J]. Trans Chin Soc Agric Eng, 2021, 37(16): 39-46. DOI: 10.11975/j.issn.1002-6819.2021.16.006.
[32]
王丹丹, 何东健. 基于R-FCN深度卷积神经网络的机器人疏果前苹果目标的识别[J]. 农业工程学报, 2019, 35(3): 156-163.
WANG D D, HE D J. Recognition of apple targets before fruits thinning by robot based on R-FCN deep convolution neural network[J]. Trans Chin Soc Agric Eng, 2019, 35(3): 156-163. DOI: 10.11975/j.issn.1002-6819.2019.03.020.
[33]
赵立新, 侯发东, 吕正超, 等. 基于迁移学习的棉花叶部病虫害图像识别[J]. 农业工程学报, 2020, 36(7): 184-191.
ZHAO L X, HOU F D, LYU Z C, et al. Image recognition of cotton leaf diseases and pests based on transfer learning[J]. Trans Chin Soc Agric Eng, 2020, 36(7): 184-191. DOI: 10.11975/j.issn.1002-6819.2020.07.021.
[34]
陈永忠, 许彦明, 张震, 等. 油茶果实主要数量性状分析及育种指标体系筛选[J]. 中南林业科技大学学报, 2021, 41(3):1-9.
CHEN Y Z, XU Y M, ZHANG Z, et al. Analysis of fruit main quantitative traits and selection of breeding index in Camellia oleifera[J]. J Central South Univ For Technol, 2021, 41(3):1-9. DOI: 10.14067/j.cnki.1673-923x.2021.03.001.
[35]
谢国俊, 曹其新, 刘建政, 等. 基于多方位视觉的果实形状特征的提取研究[J]. 农业工程学报, 2007, 23(7): 127-132.
XIE G J, CAO Q X, LIU J Z, et al. Method for fruit shape feature acquisition based on multidirectional vision[J]. Trans Chin Soc Agric Eng, 2007, 23(7): 127-132. DOI: 10.3321/j.issn:1002-6819.2007.07.025.
[36]
张卫正, 徐武峰, 裘正军, 等. 基于多视角图像的植物叶片建模与曲面面积测量[J]. 农业机械学报, 2013, 44(7):229-234.
ZHANG W Z, XU W F, QIU Z J, et al. Plant leaf modeling and surface area measuring based on multi-view images[J]. Trans Chin Soc Agric Mach, 2013, 44(7): 229-234. DOI: 10.6041/j.issn.1000-1298.2013.07.040.

基金

国家自然科学基金项目(32071682)
国家自然科学基金项目(31901311)
湖南省大学生创新创业训练计划项目(S202010538008)
湖南省教育厅重点项目(18A151)
湖南省教育厅重点项目(19A525)

编辑: 李燕文
PDF(20913 KB)

Accesses

Citation

Detail

段落导航
相关文章

/