
基于相机拍照的油茶果形状特征提取研究
棘玉, 尹显明, 严恩萍, 蒋佳敏, 彭邵锋, 莫登奎
南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (2) : 63-70.
基于相机拍照的油茶果形状特征提取研究
Research on extraction of shape features of Camellia oleifera fruits based on camera photography
【目的】为实现油茶果实尺寸及大小分布的快速获取,提出一种基于相机拍摄的油茶果形状特征参数批量化提取方法。【方法】首先将采摘油茶果摆放于含刻度尺的背景板,利用相机快速获取油茶果图像并进行校正;然后利用Mask R-CNN模型对图像油茶果进行快速检测计数,根据生成的掩码采用椭圆拟合法统计油茶果特征参数(长轴长、短轴长、面积、周长)的像元个数;最后结合背景板刻度尺计算的像元大小,获取油茶果特征参数,同时利用实测值进行精度验证。【结果】Mask R-CNN模型的平均识别准确率和召回率分别为99.55%和91.19%,测度值为95.22%,满足用于统计油茶果形状特征参数的要求。对油茶果面积的估测精度最高,决定系数(R2)、平均绝对误差(MAE)、均方根误差(RMSE)分别为0.999 0、10.75 mm2、14.88 mm2;其次为周长和长轴长,短轴长的估测精度最低,其R2、MAE、RMSE分别为0.864 7、3.15 mm、3.74 mm。【结论】该方法实现了油茶果采摘后的快速准确计数以及形状特征参数的批量化提取,可为大量果实特征参数的快速准确检测提供参考,为指导油茶果实分级和快速测产提供科学依据。
【Objective】Camellia oleifera, one of the four major woody oilseeds in the world, has a comprehensive utilization value. As a key rural industry in southern China, it plays an important role in the development of the agricultural economy. In recent years, with a vigorous support from the national government at all levels, the C. oleifera planting area has been expanding annually. Therefore, it is important to obtain information on the shapes of C. oleifera fruits quickly and accurately to determine the size distribution, guide fruit grading, and calculate rapid yield measurements. This paper proposes a batch extraction method for C. oleifera fruit shape feature parameters based on camera photography. 【Method】First, the picked C. oleifera fruits were placed on a background plate with a scale, using a camera to quickly obtain images of C. oleifera fruits and a correction of the geometric distortions produced by photography. Then, the Mask R-CNN model was used for a fast detection and counting of the C. oleifera fruits in the image. According to the generated mask, the number of pixels of the feature parameters (length of the long axis and short axis, area and perimeter) of the camellia fruits was counted using the elliptic fitting method. Finally, the image pixel size calculated with the help of the background plate scale was used to obtain the key parameters of the oil tea fruits, while the accuracy was verified using the actual measured values. 【Result】The average recognition accuracy and recall of the mask R-CNN model were 99.55% and 91.19%, respectively, and the F-measure value was 95.22%, showing that the method was suitable for describing C. oleifera fruit shape parameters statistically. The estimated accuracy of the area of the C. oleifera fruits was the highest with the coefficient of determination (R2), mean absolute error (MAE), and root mean square error (RMSE) of 0.999 0, 10.75 mm2, and 14.88 mm2, followed by the perimeter and length of the long axis, and the lowest accuracy of length of the the short axis with R2, MAE, and RMSE of 0.864 7, 3.15 mm, and 3.74 mm, respectively. 【Conclusion】The method achieved a rapid and accurate counting of C. oleifera fruits shape feature parameters after picking and batch extraction. Thus, the technique can rapidly and accurately detect a large number of fruit feature parameters and provide a scientific basis for the C. oleifera fruit grading and rapid yield measurement.
近景摄影 / 形状特征提取 / 图像处理 / 卷积神经网络 / 油茶果
close-range photogrammetry / shape feature extraction / image processing / convolutional neural network / Camellia oleifera fruit
[1] |
周文才, 王仲伟, 董乐, 等. 浙江红花油茶种实性状多样性分析[J]. 南京林业大学学报(自然科学版), 2021, 45(2):51-59.
|
[2] |
陈永忠, 邓绍宏, 陈隆升, 等. 油茶产业发展新论[J]. 南京林业大学学报(自然科学版), 2020, 44(1):1-10.
|
[3] |
迟诚, 康勇军. 扎实推动油茶产业实现高质量发展:全国油茶产业发展工作会议在江西赣州召开[J]. 中国林业产业, 2019(11): 10-11.
|
[4] |
祝诗平, 卓佳鑫, 黄华, 等. 基于CNN的小麦籽粒完整性图像检测系统[J]. 农业机械学报, 2020, 51(5): 36-42.
|
[5] |
高霁月, 倪建功, 杨昊岩, 等. 基于数据平衡和深度学习的开心果品质视觉检测方法[J]. 农业机械学报, 2021, 52(7):367-372.
|
[6] |
|
[7] |
张习之, 李立君. 基于改进卷积自编码机的油茶果图像识别研究[J]. 林业工程学报, 2019, 4(3): 118-124.
|
[8] |
|
[9] |
|
[10] |
黄小玉, 李光林, 马驰, 等. 基于改进判别区域特征融合算法的近色背景绿色桃子识别[J]. 农业工程学报, 2018, 34(23): 142-148.
|
[11] |
王津京, 赵德安, 姬伟, 等. 采摘机器人基于支持向量机苹果识别方法[J]. 农业机械学报, 2009, 40(1): 148-151,147.
|
[12] |
|
[13] |
|
[14] |
|
[15] |
谢为俊, 丁冶春, 王凤贺, 等. 基于卷积神经网络的油茶籽完整性识别方法[J]. 农业机械学报, 2020, 51(7):13-21.
|
[16] |
刘忠伟, 戚大伟. 基于卷积神经网络的树种识别研究[J]. 森林工程, 2020, 36(1):33-38.
|
[17] |
李昕, 陈泽君, 李立君, 等. 基于偏好免疫网络和SVM算法的油茶果多特征识别[J]. 农业工程学报, 2020, 36(22): 205-213.
|
[18] |
段宇飞, 皇甫思思, 王焱清, 等. 基于机器视觉的油茶果果壳与茶籽分选方法研究[J]. 中国农机化学报, 2020, 41(6):171-178.
|
[19] |
谢锋云, 周建民, 江炜文, 等. 基于隐马尔科夫模型的苹果分级方法研究[J]. 食品与机械, 2016, 32(7): 29-31,111.
|
[20] |
|
[21] |
|
[22] |
左兴健, 武广伟. 猕猴桃自动分级设备设计与试验[J]. 农业机械学报, 2014, 45(S1): 287-295.
|
[23] |
李立君, 阳涵疆. 基于改进凸壳理论的遮挡油茶果定位检测算法[J]. 农业机械学报, 2016, 47(12):285-292,346.
|
[24] |
|
[25] |
李昕, 李立君, 高自成, 等. 改进类圆随机Hough变换及其在油茶果实遮挡识别中的应用[J]. 农业工程学报, 2013, 29(1):164-170.
|
[26] |
|
[27] |
闫蓓, 王斌, 李媛. 基于最小二乘法的椭圆拟合改进算法[J]. 北京航空航天大学学报, 2008, 34(3): 295-298.
|
[28] |
黄汉平. 椭圆周长的计算[J]. 洪都科技, 1978(3): 19-26,11.
|
[29] |
花伟成, 田佳格, 孙心雨, 等. 基于TLS数据的杨树削度方程建立及材积估算[J]. 南京林业大学学报(自然科学版), 2021, 45(4):41-48.
|
[30] |
程艳. 正态分布的应用研究[J]. 内蒙古煤炭经济, 2021(11):229-230.
|
[31] |
严恩萍, 棘玉, 尹显明, 等. 基于无人机影像自动检测冠层果的油茶快速估产方法[J]. 农业工程学报, 2021, 37(16): 39-46.
|
[32] |
王丹丹, 何东健. 基于R-FCN深度卷积神经网络的机器人疏果前苹果目标的识别[J]. 农业工程学报, 2019, 35(3): 156-163.
|
[33] |
赵立新, 侯发东, 吕正超, 等. 基于迁移学习的棉花叶部病虫害图像识别[J]. 农业工程学报, 2020, 36(7): 184-191.
|
[34] |
陈永忠, 许彦明, 张震, 等. 油茶果实主要数量性状分析及育种指标体系筛选[J]. 中南林业科技大学学报, 2021, 41(3):1-9.
|
[35] |
谢国俊, 曹其新, 刘建政, 等. 基于多方位视觉的果实形状特征的提取研究[J]. 农业工程学报, 2007, 23(7): 127-132.
|
[36] |
张卫正, 徐武峰, 裘正军, 等. 基于多视角图像的植物叶片建模与曲面面积测量[J]. 农业机械学报, 2013, 44(7):229-234.
|
/
〈 |
|
〉 |