不同园林废弃物堆肥过程中化学性状变化及其对发芽指数的影响

胡永恒, 张程, 万华琴, 朱咏莉, 李萍萍

南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (6) : 133-140.

PDF(2439 KB)
PDF(2439 KB)
南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (6) : 133-140. DOI: 10.12302/j.issn.1000-2006.202202011
研究论文

不同园林废弃物堆肥过程中化学性状变化及其对发芽指数的影响

作者信息 +

Changes of chemical properties during composting of different garden wastes and their effects on germination index

Author information +
文章历史 +

摘要

【目的】研究不同园林废弃物发酵腐熟特征以及影响发芽指数(GI)的主要因素,为探索园林废弃物发酵腐熟程度的科学评价,以及园林废弃物的资源化高效利用提供理论依据。【方法】通过分析4种园林废弃物[(榉树(Zelkova schneideriana)枝和叶、法国梧桐树(Platanus orientails)枝和树叶]堆肥发酵过程中温度、pH、电导率(EC)、有机质含量、纤维素含量以及腐殖酸含量等指标的变化,研究不同类型园林废弃物发酵腐熟过程的差异,同时以生菜种子发芽指数(GI)作为判断依据,分析与其他性状指标变化的关系及影响GI的主要因素。【结果】①法国梧桐枝、叶较榉树枝、叶更易发酵,堆肥过程中物料温度高3.2~5.0 ℃。随着发酵进程,各处理pH均有升高,发酵结束时榉树叶pH最高,与最低的法国梧桐枝之间差异显著;而各处理EC值显著下降,其中法国梧桐叶和榉树叶EC值显著高于法国梧桐枝和榉树枝。②法国梧桐枝较其他3个处理含有更多易分解的有机成分,其发酵过程中有机质、木质素和纤维素降解幅度最大,榉树叶在发酵前后有机物含量都最低。同时,4个处理的腐殖化程度明显不同,其中发酵结束时的榉树叶腐殖化系数(HI)显著高于其他3个处理。③法国梧桐枝和榉树枝发酵腐熟物的发芽指数(GI)均显著高于法国梧桐叶和榉树叶。④影响4种园林废弃物GI的主要指标为有机质含量、EC值、胡敏酸含量以及纤维素含量。【结论】对于榉树叶和榉树枝,有机质含量和纤维素含量是GI的主要贡献因子;而对于法国梧桐叶和枝,胡敏酸含量和EC值对GI影响的贡献更大。

Abstract

【Objective】 The main factors affecting the fermentation and maturity of different garden wastes and the main factors affecting their germination index (GI) were studied. The findings provide a theoretical basis for exploring the scientific evaluation of the fermentation and maturity of garden waste and the efficient utilization of garden waste resources. 【Method】 Changes of temperature, pH, electric conductivity (EC), organic matter content, cellulose content and humic acid content in four kinds of garden waste (branches and leaves of beech and phoenix) were analyzed during the compost fermentation process. 【Result】 There were four main results. First, branches and leaves of phoenix were more easily fermented than beech branches and leaves. The composting temperature of phoenix was 3.2 to 5.0 ℃ higher than that of beech. With the fermentation process, pH increased in all treatments. The pH of beech leaves was the highest at the end of fermentation, and the difference was significant between the beech leaves and the phoenix branches. The EC value of each treatment decreased significantly and were significantly higher for phoenix and beech leaves than for phoenix and beech branches. Second, phoenix branches contained more easily decomposed organic compounds than the other three treatments; during the phoenix branch fermentation process, the degradation range of organic matter, lignin, and cellulose was the largest, and the organic content of beech leaves was the lowest before and after fermentation. The humification degree of the four treatments was significantly different, and the humification coefficient of the leaves of beech leaves at the end of fermentation was significantly higher than that of the other three treatments. Third, phoenix and beech branch fermented maturity indices (GI) were significantly higher than those of phoenix leaves and beech leaves. Fourth, the main indices affecting the GI of the four garden wastes were organic matter content, EC, humic acid content, and cellulose content. 【Conclusion】 Organic matter and cellulose contents were the main contributing factors to GI in beech leaves and branches. For phoenix leaves and phoenix branches, humic acid content and EC contributed more to the GI.

关键词

园林废弃物 / 堆肥 / 化学性状 / 发芽指数 / 榉树 / 法国梧桐

Key words

garden waste / composting / chemical properties / germination index / beech(Zelkova schneideriana) / phoenix(Platanus orientails)

引用本文

导出引用
胡永恒, 张程, 万华琴, . 不同园林废弃物堆肥过程中化学性状变化及其对发芽指数的影响[J]. 南京林业大学学报(自然科学版). 2023, 47(6): 133-140 https://doi.org/10.12302/j.issn.1000-2006.202202011
HU Yongheng, ZHANG Cheng, WAN Huaqin, et al. Changes of chemical properties during composting of different garden wastes and their effects on germination index[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2023, 47(6): 133-140 https://doi.org/10.12302/j.issn.1000-2006.202202011
中图分类号: X71;S141.4   

参考文献

[1]
刘瑜, 赵佳颖, 周晚来, 等. 城市园林废弃物资源化利用研究进展[J]. 环境科学与技术, 2020, 43(4):32-38.
LIU Y, ZHAO J Y, ZHOU W L, et al. Progress on resource utilization of urban garden waste[J]. Environ Sci Technol, 2020, 43(4):32-38.DOI: 10.19672/j.cnki.1003-6504.2020.04.006.
[2]
李萍萍, 朱咏莉. 基于农林废弃物的植物培育基质开发及应用技术研究进展[J]. 南京林业大学学报(自然科学版), 2015, 39(5):161-168.
LI P P, ZHU Y L. Development and application of plant growing substrates made of agricultural and forestry wastes:a review[J]. J Nanjing For Univ (Nat Sci Ed), 2015, 39(5):161-168.DOI: 10.3969/j.issn.1000-2006.2015.05.027.
[3]
黄国锋, 钟流举, 张振钿, 等. 有机固体废弃物堆肥的物质变化及腐熟度评价[J]. 应用生态学报, 2003, 14(5):813-818.
HUANG G F, ZHONG L J, ZHANG Z T, et al. Physicochemical changes and maturity evaluation of solid organic waste compost[J]. Chin J Appl Ecol, 2003, 14(5):813-818.
[4]
陈浩天, 张地方, 张宝莉, 等. 园林废弃物不同处理方式的环境影响及其产物还田效应[J]. 农业工程学报, 2018, 34(21):239-244.
CHEN H T, ZHANG D F, ZHANG B L, et al. Environmental impacts and returning effects of garden wastes under different disposal methods[J]. Trans Chin Soc Agric Eng, 2018, 34(21):239-244.DOI: 10.11975/j.issn.1002-6819.2018.21.030.
[5]
XU Z C, MA Y, ZHANG L X, et al. Relating bacterial dynamics and functions to gaseous emissions during composting of kitchen and garden wastes[J]. Sci Total Environ, 2021, 767:144210.DOI: 10.1016/j.scitotenv.2020.144210.
[6]
杜田甜, 孙向阳, 李素艳, 等. 园林绿化废弃物覆盖对城市绿地土壤肥力影响[J]. 北京林业大学学报, 2021, 43(10):110-117.
DU T T, SUN X Y, LI S Y, et al. Effects of landscaping waste mulching on soil fertility of urban green space[J]. J Beijing For Univ, 2021, 43(10):110-117.
[7]
LI J N, SUN X Y, LI S Y. Effects of garden waste compost and bentonite on muddy coastal saline soil[J]. Sustainability, 2020, 12(9):3602.DOI: 10.3390/su12093602.
[8]
殷小冬, 陈海波, 陈森, 等. 园林废弃物的好氧堆肥及花卉育苗基质研发[J]. 北方园艺, 2021(7):72-80.
YIN X D, CHEN H B, CHEN S, et al. Aerobic composting of garden waste and development of flower seedling substrate[J]. North Hortic, 2021(7):72-80.DOI: 10.11937/bfyy.20202127.
[9]
陈彤, 邱军付, 齐兴育, 等. 园林废弃物基栽培基质的配方筛选及综合评价[J]. 环境工程学报, 2021, 15(4):1444-1450.
CHEN T, QIU J F, QI X Y, et al. Screening and comprehensive evaluation of garden waste based cultivation substrate[J]. Chin J Environ Eng, 2021, 15(4):1444-1450.DOI: 10.12030/j.cjee.202008169.
[10]
郝丹, 张璐, 孙向阳, 等. 金盏菊栽培中园林废弃物堆肥与牛粪替代泥炭的效果分析[J]. 植物营养与肥料学报, 2020, 26(8):1556-1564.
HAO D, ZHANG L, SUN X Y, et al. Effect analysis of garden waste compost and cow manure substituting peat in Calendula officinalis cultivation[J]. J Plant Nutr Fertil, 2020, 26(8):1556-1564. DOI:10.11674/zwyf.19475
[11]
孙桂阳, 张国言, 董元杰. 不同来源农业废弃物堆肥进程与产品肥效研究[J]. 水土保持学报, 2021, 35(4):349-360.
SUN G Y, ZHANG G Y, DONG Y J. Composting process of agricultural wastes from different sources and fertilizer efficiency of their products[J]. J Soil Water Conserv, 2021, 35(4):349-360.DOI: 10.13870/j.cnki.stbcxb.2021.04.048.
[12]
康跃, 李素艳, 孙向阳, 等. 园林废弃物木质素降解真菌的筛选、鉴别及其能力研究[J]. 林业科学研究, 2019, 32(3):80-87.
KANG Y, LI S Y, SUN X Y, et al. Study on screening,identification and capability of lignin-degrading fungi for landscaping waste[J]. For Res, 2019, 32(3):80-87.DOI: 10.13275/j.cnki.lykxyj.2019.03.011.
[13]
付冰妍, 孙向阳, 余克非, 等. 降解园林废弃物专用固体复合菌的构建及其堆肥效应研究[J]. 环境科学研究, 2021, 34(5):1231-1237.
FU B Y, SUN X Y, YU K F, et al. Construction of solid composite inoculum for green waste degradation and its effect on composting[J]. Res Environ Sci, 2021, 34(5):1231-1237.DOI: 10.13198/j.issn.1001-6929.2020.08.16.
[14]
孟童瑶, 李素艳, 邹荣松, 等. 固定化木质素降解菌对园林废弃物堆肥的影响[J]. 浙江农林大学学报, 2021, 38(1):38-46.
MENG T Y, LI S Y, ZOU R S, et al. Effect of immobilized lignin-degrading bacteria on green waste composting[J]. J Zhejiang A&F Univ, 2021, 38(1):38-46.DOI: 10.11833/j.issn.2095-0756.20200219.
[15]
胡亚利, 孙向阳, 龚小强, 等. 混合改良剂改善园林废弃物堆肥基质品质提高育苗效果[J]. 农业工程学报, 2014, 30(18):198-204.
HU Y L, SUN X Y, GONG X Q, et al. Mix-ameliorant improving substrates quality of waste compost from garden and seedling effect[J]. Trans Chin Soc Agric Eng, 2014, 30(18):198-204.DOI: 10.3969/j.issn.1002-6819.2014.18.025.
[16]
冯海萍, 杨志刚, 杨冬艳, 等. 枸杞枝条基质化发酵工艺及参数优化[J]. 农业工程学报, 2015, 31(5):252-258,260,259.
FENG H P, YANG Z G, YANG D Y, et al. Parameter optimization of fermented substrate from wolfberry shoots[J]. Trans Chin Soc Agric Eng, 2015, 31(5):252-258,260,259.DOI: 10.3969/j.issn.1002-6819.2015.05.035.
[17]
孟国欣, 查同刚, 巩潇, 等. 污泥添加园林废弃物堆肥过程参数变化及腐熟度综合评价[J]. 生态环境学报, 2018, 27(8):1538-1546.
MENG G X, ZHA T G, GONG X, et al. Parameter changes and comprehensive evaluation of maturity during the composting process of adding garden waste to sewage sludge[J]. Ecol Environ Sci, 2018, 27(8):1538-1546.DOI: 10.16258/j.cnki.1674-5906.2018.08.021.
[18]
王震, 胡强, 朱计谋, 等. 不同调控措施对葡萄冬剪枝条堆肥效果的影响[J]. 土壤通报, 2021, 52(3):629-634.
WANG Z, HU Q, ZHU J M, et al. Effects of different treatments on composting from winter cuttings of grape[J]. Chin J Soil Sci, 2021, 52(3):629-634.DOI: 10.19336/j.cnki.trtb.2020102701.
[19]
李文玉, 栾亚宁, 孙向阳, 等. 接种外源微生物菌剂对园林废弃物堆肥腐熟的影响[J]. 生态学杂志, 2014, 33(10):2670-2677.
LI W Y, LUAN Y N, SUN X Y, et al. Effects of inoculating microbes on composting of green wastes[J]. Chin J Ecol, 2014, 33(10):2670-2677.DOI: 10.13292/j.1000-4890.2014.0229.
[20]
赵恺凝, 赵国柱, 国辉, 等. 园林废弃物堆肥化技术中微生物菌剂的功能与作用[J]. 生物技术通报, 2016, 32(1):41-48.
ZHAO K N, ZHAO G Z, GUO H, et al. The function and role of microbial agents in composting technology of garden waste[J]. Biotechnol Bull, 2016, 32(1):41-48.DOI: 10.13560/j.cnki.biotech.bull.1985.2016.01.008.
[21]
陈金峰, 黄丽丽, 何慧中, 等. 复合菌剂与氮源对桉树皮堆肥的理化性质与微生物学特性的影响[J]. 热带作物学报, 2015, 36(4):724-730.
CHEN J F, HUANG L L, HE H Z, et al. Physiochemical and microbiological changes during composting of Eucalyptus bark with microbial incubation and nitrogen supplement[J]. Chin J Trop Crops, 2015, 36(4):724-730.DOI: 10.3969/j.issn.1000-2561.2015.04.015.
[22]
王瑞莹, 周童, 万可, 等. 不同类型园林废弃物堆肥过程中理化性质的动态变化[J]. 天津农业科学, 2017, 23(11):96-99.
WANG R Y, ZHOU T, WAN K, et al. Dynamic transformation of physical and chemical properties during different composting of garden wastes[J]. Tianjin Agric Sci, 2017, 23(11):96-99.DOI: 10.3969/j.issn.1006-6500.2017.11.023.
[23]
宋良红, 王珂, 李小康, 等. 三种单一类型园林废弃物集约化制肥效果研究[J]. 湖北农业科学, 2021, 60(12):31-35.
SONG L H, WANG K, LI X K, et al. Study on the effect of intensive fertilizer production of three single types of greening wastes[J]. Hubei Agric Sci, 2021, 60(12):31-35.DOI: 10.14088/j.cnki.issn0439-8114.2021.12.006.
[24]
吴健, 梁文华, 方楠, 等. 法国梧桐落叶厌氧消化产沼气潜力及动力学研究[J]. 中国沼气, 2019, 37(4):72-76.
WU J, LIANG W H, FANG N, et al. The biogas production potential and anaerobic fermentation kinetics of Platanus leaves[J]. China Biogas, 2019, 37(4):72-76.
[25]
张彤彤, 顾平道, 黄跃武. 碳氮比对法国梧桐落叶、香樟青叶与猪粪混合厌氧发酵特性的影响[J]. 河南农业大学学报, 2019, 53(1):99-105.
ZHANG T T, GU P D, HUANG Y W. Effects of carbon/nitrogen ratio on characteristics of anaerobic co-digestion of fallen leaves of French paulownia and green leaves of camphor with pig manure[J]. J Henan Agric Univ, 2019, 53(1):99-105.DOI: 10.16445/j.cnki.1000-2340.2019.01.015.
[26]
鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000.
BAO S D. Soil and agricultural chemistry analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000.
[27]
ROLETTO E, CONSIGLIO M, JODICE R, et al. Chemical parameters for evaluating compost maturity[J]. BioCycle, 1985, 26(2):46-47.
[28]
王占军. 不同添加剂对园林废弃物堆肥的影响研究[D]. 大连: 大连理工大学, 2019.
WANG Z J. Effects of different additives on composting of garden waste[D]. Dalian: Dalian University of Technology, 2019.
[29]
黄光群, 黄晶, 张阳, 等. 沼渣好氧堆肥种子发芽指数快速预测可行性分析[J]. 农业机械学报, 2016, 47(5):177-182.
HUANG G Q, HUANG J, ZHANG Y, et al. Feasibility analysis of rapid prediction of seed germination index during digestate aerobic composting[J]. Trans Chin Soc Agric Mach, 2016, 47(5):177-182.DOI: 10.6041/j.issn.1000-1298.2016.05.024.
[30]
任连海, 黄燕冰, 王攀. 含盐量对餐厨垃圾堆肥理化特性变化规律的影响[J]. 重庆大学学报, 2014, 37(7):104-109.
REN L H, HUANG Y B, WANG P. Effect of salt content on the change of physicochemical characteristics of restaurant garbage during aerobic composting[J]. J Chongqing Univ, 2014, 37(7):104-109.DOI: 10.11835/j.issn.1000-582X.2014.07.014.
[31]
田赟. 园林废弃物堆肥化处理及其产品的应用研究[D]. 北京: 北京林业大学, 2012.
TIAN Y. Green waste composting and the products as the peat substitutes in growth media[D]. Beijing: Beijing Forestry University, 2012.
[32]
曾惠婷. 两种脱水污泥堆肥过程腐殖质和电子转移转化规律研究[D]. 桂林: 桂林理工大学, 2020.
ZENG H T. The evolution of humus and electron transfer of during composting of two kinds of dewatered sludge[D]. Guilin: Guilin University of Technology, 2020.

脚注

基金

江苏省科技厅农业重点研发项目(BE2018321)
江苏高校优势学科建设工程资助项目(PAPD)

编辑: 郑琰燚
PDF(2439 KB)

Accesses

Citation

Detail

段落导航
相关文章

/