温度对白皮松种子萌发过程中储藏物质代谢及酶活性的影响

郭聪聪, 沈永宝, 史锋厚

南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (6) : 25-34.

PDF(2640 KB)
PDF(2640 KB)
南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (6) : 25-34. DOI: 10.12302/j.issn.1000-2006.202203069
专题报道Ⅰ:“攥紧中国种子”视域下的中国林草种业研究专题Ⅱ(执行主编 施季森 李维林)

温度对白皮松种子萌发过程中储藏物质代谢及酶活性的影响

作者信息 +

Effects of temperature on stored substance metabolism and enzyme activity during germination of Pinus bungeana seeds

Author information +
文章历史 +

摘要

【目的】探索温度影响白皮松(Pinus bungeana)种子萌发过程中水分、储藏物质含量和酶活性变化的生理机制,以揭示温度影响种子萌发的生理机制。【方法】将白皮松种子置于不同温度下进行萌发试验,检测温度对发芽率和萌发过程中含水率、可溶性糖、淀粉、蛋白质、粗脂肪含量及淀粉酶、蛋白酶和酸性磷酸酶活性等生理指标的影响。【结果】萌发温度为15和20 ℃时,种子发芽率达90%左右;当萌发温度升高到25和30 ℃,种子萌发受阻,发芽率急剧降至10%以下。20 ℃条件下,种子萌发过程水分含量变化分为快速升高期、滞缓期和重新快速升高期3个阶段;萌发过程中,种子内的物质代谢活动较为强烈:可溶性糖含量先降低后升高,6 d后淀粉开始水解,10 d后脂肪和蛋白质在相关酶的作用下分解为小分子物质供胚利用。25 ℃条件下,种子吸水始终停留在滞缓期;过高的温度抑制了酸性磷酸酶、淀粉酶和蛋白酶的活性,影响了脂肪、淀粉和蛋白质的降解;可溶性糖含量有所降低以维持种子“静止”状态。【结论】白皮松种子萌发的适宜温度条件为15~20 ℃,温度继续升高会产生热抑制;适温条件下(20 ℃),种子萌发优先利用胚自身贮藏的物质,最先利用的是碳水化合物,然后是蛋白质和脂类的动员,且脂肪大量降解始于胚根突破种皮后。高温25 ℃条件下,种子中的酶活性被抑制,物质分解代谢受阻,胚不能吸收和利用足够的营养来完成萌发。

Abstract

【Objective】The study explored the changes of water content, storage substance content, and enzyme activity during the germination process of Pinus bungeana seeds, in order to reveal the physiological mechanism of temperature that affects the seed germination. 【Method】Seed germination was performed at various temperatures to study the effects of temperature on the extent of germination. Physiological indicators, such as the content of water, soluble sugar, starch, soluble protein, crude fat and the activities of amylase, protease and acid phosphatase were measured during the germination process. 【Result】A high germination percentage (approximately 90%) was obtained when the seeds were cultured at 15 and 20 ℃. As the culture temperature continued to rise to 25 and 30 ℃, the radicle protrusion and seed germination were seriously hindered, resulting in a sharp drop in germination percentage to <10%. At 20 ℃, the change of water content during germination could be characterized into three stages: rapid increase, period of retardation, and another rapid increase. During germination, the catabolism and anabolism of substances occurred vigorously in the seeds. The soluble sugar content initially decreased and then gradually increased. As starch began to hydrolyze with a decreased content after six days of cultivation, the crude fat and soluble protein were degraded into small molecules as catalyzed by the corresponding enzymes for embryo utilization after 10 days of cultivation. At 25 ℃, the water absorption process of seeds stayed in the retardation period throughout. At this incubation temperature, the activities of acid phosphatase, amylase, and protease in seeds was inhibited due to the excessive temperature, thus affecting the degradation of crude fat, soluble protein and soluble starch. In addition, the soluble sugar content was slightly decreased to keep the ‘still’ state of the seeds with low consumption. 【Conclusion】The suitable temperature range for seed germination of P. bungeana was 15-20 ℃. However, if the temperature continued to rise, seed germination was hindered and thermal inhibition occurred. At the favorable temperature of 20 ℃, seeds would preferentially use the nutrients stored in the embryo when germination occurred. Carbohydrates are first decomposed and utilized, followed by the mobilization of proteins and lipids. Degradation of a large amount of fat began after the radicle broke through the seed coat. At a high temperature of 25 ℃, the activity of enzymes in the seeds was inhibited, resulting in the catabolism of macromolecular substances was hindered. Ultimately, the embryo could not absorb and utilize enough nutrients to complete the germination process.

关键词

白皮松 / 种子萌发 / 温度 / 物质代谢 / 酶活性

Key words

Pinus bungeana / seed germination / temperature / substance metabolism / enzyme activity

引用本文

导出引用
郭聪聪, 沈永宝, 史锋厚. 温度对白皮松种子萌发过程中储藏物质代谢及酶活性的影响[J]. 南京林业大学学报(自然科学版). 2023, 47(6): 25-34 https://doi.org/10.12302/j.issn.1000-2006.202203069
GUO Congcong, SHEN Yongbao, SHI Fenghou. Effects of temperature on stored substance metabolism and enzyme activity during germination of Pinus bungeana seeds[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2023, 47(6): 25-34 https://doi.org/10.12302/j.issn.1000-2006.202203069
中图分类号: S688.9   

参考文献

[1]
BEWLEY J D, BRADFORD K, HILHORST H, et al. Seeds: physiology of development, germination and dormancy[M]. New York: Plenum Press, 2014.
[2]
MARCOS F J. Fisiologia de sementes de plantas cultivadas[M]. Londrina:Abrates, 2015.
[3]
STECKEL L E, SPRAGUE C L, STOLLER E W, et al. Temperature effects on germination of nine Amaranthus species[J]. Weed Sci, 2004, 52(2):217-221.DOI: 10.1614/ws-03-012r.
[4]
陈禅友, 张凤银, 李春芳, 等. 温度与水分双重胁迫下豇豆种子萌发的生理变化[J]. 种子, 2008, 27(9):51-56.
CHEN C Y, ZHANG F Y, LI C F, et al. Physiological changes during Asparagus bean seed germination under dual stresses of temperature and water[J]. Seed, 2008, 27(9):51-56.DOI: 10.16590/j.cnki.1001-4705.2008.09.087.
[5]
薛婷婷, 刘嘉, 沈永宝, 等. 温度对薄壳山核桃种子萌发的影响及其机制初探[J]. 中南林业科技大学学报, 2017, 37(11):42-50.
XUE T T, LIU J, SHEN Y B, et al. Study on the seed germination characteristic of Carya illinoensis[J]. J Cent South Univ For Technol, 2017, 37(11):42-50.DOI: 10.14067/j.cnki.1673-923x.2017.11.008.
[6]
程波翔, 钟国跃, 谢欢, 等. 不同温度下穿心莲种子萌发的生理生化特性研究[J]. 湖北农业科学, 2016, 55(19):5083-5086,5113.
CHENG B X, ZHONG G Y, XIE H, et al. Study on physiological and biochemical characteristics of Andrographis paniculata(Burm.f.) nees seed germination under different temperature conditions[J]. Hubei Agric Sci, 2016, 55(19):5083-5086,5113.DOI: 10.14088/j.cnki.issn0439-8114.2016.19.048.
[7]
刘啸笑, 何章, 夏冬冬, 等. 温度与土壤水分对玉米种子活力和贮藏物质转运的影响[J]. 灌溉排水学报, 2017, 36(6):18-21.
LIU X X, HE Z, XIA D D, et al. Impact of temperature and soil moisture on seed vitality of maize and transport of storage materials within it[J]. J Irrig Drain, 2017, 36(6):18-21.DOI: 10.13522/j.cnki.ggps.2017.06.004.
[8]
郁万文, 曹福亮, 汪贵斌, 等. 两种温度下不同品系银杏种子萌发生理的比较[J]. 东北林业大学学报, 2008, 36(3):1-2,11.
YU W W, CAO F L, WANG G B, et al. Seed germination physiology of different Ginkgo strains under two temperatures[J]. J Northeast For Univ, 2008, 36(3):1-2,11.DOI: 10.3969/j.issn.1000-5382.2008.03.001.
[9]
李斌, 顾万春. 白皮松分布特点与研究进展[J]. 林业科学研究, 2003, 16(2):225-232.
LI B, GU W C. Distribution of natural resources and research review on Pinus bungeana[J]. For Res, 2003, 16(2):225-232.DOI: 10.3321/j.issn:1001-1498.2003.02.017.
[10]
董丽芬, 邵崇斌, 张宗勤. 白皮松种胚的休眠萌发特性研究[J]. 林业科学, 2003, 39(6):47-54.
DONG L F, SHAO C B, ZHANG Z Q. Characteristics of embryo dormancy and germination of Pinus bungeana[J]. Sci Silvae Sin, 2003, 39(6):47-54.DOI: 10.3321/j.issn:1001-7488.2003.06.008.
[11]
王小平, 王九龄. 白皮松种子内含物的提取、分离及生物测定[J]. 种子, 1998, 17(5):19-22,28.
WANG X P, WANG J L. Extraction,separation and biological measurement of endogenous growth regulating substance of seeds of Pinus bungeana[J]. Seed, 1998, 17(5):19-22,28. DOI: 10.16590/j.cnki.1001-4705.1998.05.038.
[12]
智信. 6种松树种子休眠原因研究[J]. 西南林学院学报, 2008, 28(2):5-9.
ZHI X. Seed dormancy mechanism of six pine species[J]. J Southwest For Coll, 2008, 28(2):5-9.DOI: 10.3969/j.issn.2095-1914.2008.02.002.
[13]
董丽芬, 肖斌, 曹翠萍. 白皮松种子休眠原因的初步探讨[J]. 陕西林业科技, 1987(1):15-17.
DONG L F, XIAO B, CAO C P. Preliminary study on the causes of seed dormancy of Pinus bungeana[J]. Shaanxi For Sci Technol, 1987(1):15-17.
[14]
ISTA. International rules for seed testing[M]. Switzerland: The International Seed Testing Association (ISTA), 2005.
[15]
王学奎, 黄见良. 植物生理生化实验原理与技术[M]. 3版. 北京: 高等教育出版社, 2015.
WANG X K, HUANG J L. Principles and techniques of plant physiological biochemical experiment[M]. 3rd ed. Beijing: Higher Education Press, 2015.
[16]
黄学林, 陈润政. 种子生理实验手册[M]. 北京: 农业出版社, 1990.
HUANG X L, CHEN R Z. Handbook of seed physiology experiment[M]. Beijing: Agriculture Press, 1990.
[17]
宋松泉. 种子生物学研究指南[M]. 北京: 科学出版社, 2005.
SONG S Q. Guide to seed biology research[M]. Beijing: Science Press, 2005.
[18]
美国农业部林务局. 美国木本植物种子手册[M]. 李霆, 等译. 北京: 中国林业出版社, 1984.
Department of Forestry,Agriculture Ministry of American. Seed handbook of woody plants in the United States[M]. LI T, et al. Beijing: China Forestry Publishing House, 1984.
[19]
WU Y, BAO W Q, HU H, et al. Effects of H2SO4 and gibberellin A3 on dormancy release of Tilia miqueliana seeds[J]. J Plant Growth Regul, 2022, 41(2):796-807.DOI: 10.1007/s00344-021-10339-w.
[20]
WANG S, SHEN Y B, BAO H P. Morphological,physiological and biochemical changes in Magnolia zenii Cheng seed during development[J]. Physiol Plant, 2021, 172(4):2129-2141.DOI: 10.1111/ppl.13445.
[21]
王昊伟, 杨玲, 鲁强, 等. 盐胁迫对大花四照花种子萌发与幼苗生长的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(3):89-94.
WANG H W, YANG L, LU Q, et al. Effects of salt stress on seed germination and seedling growth of Cornus florida[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(3):89-94.DOI: 10.3969/j.issn.1000-2006.201903002.
[22]
张鹏, 孙红阳, 沈海龙. 温度对经层积处理解除休眠的水曲柳种子萌发的影响[J]. 植物生理学通讯, 2007, 43(1):21-24.
ZHANG P, SUN H Y, SHEN H L. Effect of temperature on germination of stratified seeds of Fraxinus mandshurica Rupr[J]. Plant Physiol Commun, 2007, 43(1):21-24.
[23]
YILMAZ M, TONGUC F. Effects of temperature on the germination of Fraxinus ornus subsp. cilicica seeds[J]. Dendrobiology, 2012, 69:111-115.DOI: 10.12657/denbio.069.012.
[24]
PACHECO F Jr, DA SILVA J B, DA SILVA NEGREIROS J R, et al. Germination and vigor of long-pepper seeds (Piper hispidinervum) as a function of temperature and light[J]. Rev Ciênc Agron, 2013, 44(2):325-333.DOI: 10.1590/s1806-66902013000200015.
[25]
KABAR K. Effects of kinetin and gibberellic acid in overcoming high temperature and salinity (NaCl) stresses on the germination of barley and lettuce seeds[J]. Phyton, 1990, 30:65-74.
[26]
RAJJOU L, GALLARDO K, DEBEAUJON I, et al. The effect of alpha-amanitin on the Arabidopsis seed proteome highlights the distinct roles of stored and neosynthesized mRNAs during germination[J]. Plant Physiol, 2004, 134(4):1598-1613.DOI: 10.1104/pp.103.036293.
[27]
CHING T M. Compositional changes of Douglas fir seeds during germination[J]. Plant Physiol, 1966, 41(8):1313-1319.DOI: 10.1104/pp.41.8.1313.
[28]
AGRAWAL P, SETHI K L, MEHRA R. Effect of temperature on germination of Lathyrus sativus seeds:an analysis[J]. Seed Res, 1980, 8:25-32.
[29]
沈超, 王莹, 张倩云, 等. 二乔玉兰种子萌发过程中胚乳储藏物质与酶活性的动态变化[J]. 林业科技开发, 2014, 28(2):55-58.
SHEN C, WANG Y, ZHANG Q Y, et al. Dynamic changes of storage matter and enzyme activity in endosperm during seed germination of Magnolia soulangeana[J]. China For Sci Technol, 2014, 28(2):55-58.DOI: 10.13360/j.issn.1000-8101.2014.02.014.
[31]
孙建, 周红英, 乐美旺, 等. 芝麻种子萌发动态及其代谢生理变化研究[J]. 中国农业科技导报, 2020, 22(8):41-48.
SUN J, ZHOU H Y, LE M W, et al. Germination dynamics and physiological changes of metabolism in sesame seed[J]. J Agric Sci Technol, 2020, 22(8):41-48.DOI: 10.13304/j.nykjdb.2019.0452.
[32]
韩克杰, 孙霞, 邢世岩, 等. 欧洲榛子贮藏及萌发生理特性研究[J]. 武汉植物学研究, 2006, 24(5):435-440.
HAN K J, SUN X, XING S Y, et al. Studies on physiological characteristics of Corylus avellana L. during storage and germination[J]. J Wuhan Bot Res, 2006, 24(5):435-440.DOI: 10.3969/j.issn.2095-0837.2006.05.010.
[33]
刘忠华, 董源, 路丙社. 阿月浑子种子萌发过程中贮藏物质含量的初步研究[J]. 种子, 2002, 21(6):28-30.
LIU Z H, DONG Y, LU B S. Preliminary studies on storage substance content during the germination of Pistacia vera seeds[J]. Seed, 2002, 21(6):28-30. DOI: 10.16590/j.cnki.1001-4705.2002.06.072.
[34]
陈丽培, 沈永宝. 油松种子萌发初始阶段物质代谢的研究[J]. 北京林业大学学报, 2010, 32(2):69-73.
CHEN L P, SHEN Y B. Material metabolism of Pinus tabulaeformis seeds during initial germinating stage[J]. J Beijing For Univ, 2010, 32(2):69-73.DOI: 10.13332/j.1000-1522.2010.02.016.
[35]
GIFFORD D J, TOLLEY M C. The seed proteins of white spruce and their mobilization following germination[J]. Physiol Plant, 1989, 77(2):254-261.DOI: 10.1111/j.1399-3054.1989.tb04978.x.
[36]
HILLS P N, VAN STADEN J. Thermoinhibition of seed germination[J]. S Afr N J Bot, 2003, 69(4):455-461.DOI: 10.1016/s0254-6299(15)30281-7.
[37]
张鹏, 孙红阳, 沈海龙, 等. 温度对水曲柳种子萌发过程中物质转化和内源激素含量的影响[J]. 东北林业大学学报, 2009, 37(7):5-7.
ZHANG P, SUN H Y, SHEN H L, et al. Effects of temperature on substance transformation and endogenous hormone content of Fraxinus mandshurica seeds during germination[J]. J Northeast For Univ, 2009, 37(7):5-7.DOI: 10.3969/j.issn.1000-5382.2009.07.002.
[38]
PIROVANO L, MORGUTTI S, ESPEN L, et al. Differences in the reactivation process in thermosensitive seeds of Phacelia tanacetifolia with germination inhibited by high temperature (30oC)[J]. Physiol Plant, 1997, 99(2):211-220.DOI: 10.1034/j.1399-3054.1997.990201.x.
[39]
RIBEIRO J N S, COSTA C S B. The effect of temperature regulation on seed germination of the tropical tree Myrsine parvifolia A.DC near its southern limit[J]. S Afr N J Bot, 2015, 98:128-133.DOI: 10.1016/j.sajb.2015.02.012.

脚注

基金

江苏省高等学校自然科学研究面上项目(21KJB220002)
江苏省林业科技创新与推广项目(LYKJ[2021]03)
江苏省林业科技创新与推广项目(LYKJ[2020]26)
江苏农林职业技术学院科技项目(2021kj30)

编辑: 吴祝华
PDF(2640 KB)

Accesses

Citation

Detail

段落导航
相关文章

/