[1] |
江泽慧. 世界竹藤[M]. 沈阳: 辽宁科学技术出版社, 2002.
|
[2] |
汪奎宏, 黄伯惠. 中国毛竹[M]. 杭州: 浙江科学技术出版社, 1996.
|
|
WANG K H, HUANG B H. Phyllostachys pubescens in China[M]. Hangzhou: Zhejiang Science & Technology Press, 1996.
|
[3] |
姚文静, 王茹, 王星, 等. 毛竹实生苗生长发育规律及其模型拟合研究[J]. 西部林业科学, 2020, 49(3):14-20,28.
|
|
YAO W J, WANG R, WANG X, et al. The growth law and its fitting model of Phyllostachys edulis seedlings[J]. J West China For Sci, 2020, 49(3):14-20,28.DOI: 10.16473/j.cnki.xblykx1972.2020.03.003.
|
[4] |
张金菊, 张国敏, 贾碧玉, 等. 毛竹种子育苗技术初探[J]. 现代园艺, 2015(12):26.
|
|
ZHANG J J, ZHANG G M, JIA B Y, et al. Preliminary study on seedling raising techniques of Phyllostachys pubescens seeds[J]. Xiandai Horticnlt, 2015(12): 26.DOI: 10.14051/j.cnki.xdyy.2015.12.021.
|
[5] |
饶林梅. 毛竹种子育苗造林技术研究[J]. 绿色科技, 2015(12):85-86,88.
|
|
RAO L M. Study on afforestation techniques of Phyllostachys pubescens seed seedling raising[J]. J Green Sci Technol, 2015(12):85-86, 88.DOI: 10.16663/j.cnki.lskj.2015.12.033.
|
[6] |
宋沁春, 魏开, 漆冬梅, 等. 盐胁迫下超声波处理对毛竹种子萌发及幼苗生长的影响[J]. 种子, 2018, 37(3):83-85.
|
|
SONG Q C, WEI K, QI D M, et al. Effect of ultrasonic treatment on seed germination and seedling growth of Ph. edulis(Carr.)H.de lehaie under salt stress[J]. Seed, 2018, 37(3):83-85. DOI: 10.16590/j.cnki.1001-4705.2018.03.083.
|
[7] |
蔡春菊, 范少辉, 曹帮华, 等. PEG和GA3引发处理对老化毛竹种子理化特性的影响[J]. 南京林业大学学报(自然科学版), 2018, 42(2):40-46.
|
|
CAI C J, FAN S H, CAO B H, et al. Effects of PEG and GA3 priming on the physiological and biochemical characteristics of aged moso bamboo (Phyllostachys edulis) seeds[J]. J Nanjing For Univ (Nat Sci Ed), 2018, 42(2):40-46.DOI: 10.3969/j.issn.1000-2006.201701021.
|
[8] |
蔡春菊, 高健, 牟少华. 60Coγ辐射对毛竹种子活力及早期幼苗生长的影响[J]. 核农学报, 2007, 21(5):436-440,455.
|
|
CAI C J, GAO J, MU S H. Effects of 60co γ rays radiation on seed vigor and young seedling growth of phyllostachys edulis[J]. J Nucl Agric Sci, 2007, 21(5):436-440,455.DOI: 10.3969/j.issn.1000-8551.2007.05.003.
|
[9] |
郭龙梅, 姜仟坤, 曹帮华, 等. 浸种温度与时间对毛竹种子发芽的影响研究[J]. 世界竹藤通讯, 2016, 14(2):19-22.
|
|
GUO L M, JIANG Q K, CAO B H, et al. Effects of soaking time and temperature on germination of moso bamboo seeds[J]. World Bamboo Rattan, 2016, 14(2):19-22.DOI: 10.13640/j.cnki.wbr.2016.02.005.
|
[10] |
黄业伟, 杨丽, 张智俊. NaCl胁迫对毛竹种子萌发及幼苗生长的影响[J]. 种子, 2009, 28(10):16-18,22.
|
|
HUANG Y W, YANG L, ZHANG Z J. Effects of NaCl stress on seeds germination and seedlings growth of Phyllostachys edulis[J]. Seed, 2009, 28(10):16-18,22.DOI: 10.16590/j.cnki.1001-4705.2009.10.069.
|
[11] |
冷华南, 郑康乐, 李国栋, 等. 毛竹种子萌发和幼苗生长对铝胁迫的反应[J]. 浙江林学院学报, 2010, 27(6):851-857.
|
|
LENG H N, ZHENG K L, LI G D, et al. Aluminum stress with seed germination and seedling growth in Phyllostachys pubescens[J]. J Zhejiang For Coll, 2010, 27(6):851-857.DOI: 10.3969/j.issn.2095-0756.2010.06.008.
|
[12] |
杨振亚, 周本智, 周燕, 等. PEG模拟干旱对毛竹种子萌发及生长生理特性的影响[J]. 林业科学研究, 2018, 31(6):47-54.
|
|
YANG Z Y, ZHOU B Z, ZHOU Y, et al. Effects of drought stress simulated by PEG on seed germination and growth physiological characteristics of Phyllostachys edulis[J]. For Res, 2018, 31(6):47-54.DOI: 10.13275/j.cnki.lykxyj.2018.06.007.
|
[13] |
徐佳慧, 赵晓亭, 毛凯涛, 等. 非生物逆境胁迫下的种子萌发调控机制研究进展[J]. 陕西师范大学学报(自然科学版), 2021, 49(3):71-83.
|
|
XU J H, ZHAO X T, MAO K T, et al. Advances in regulatory mechanisms of seed germination under abiotic stresses[J]. J Shaanxi Norm Univ (Nat Sci Ed), 2021, 49(3):71-83.DOI: 10.15983/j.cnki.jsnu.2021.03.013.
|
[14] |
MENG X W, LI X, ZHANG P J, et al. Circular RNA:an emerging key player in RNA world[J]. Brief Bioinform, 2017, 18(4):547-557.DOI: 10.1093/bib/bbw045.
|
[15] |
ZHANG P J, LI S D, CHEN M. Characterization and function of circular RNAs in plants[J]. Front Mol Biosci, 2020, 7:91.DOI: 10.3389/fmolb.2020.00091.
|
[16] |
CHU Q J, ZHANG X C, ZHU X T, et al. Plantcirc base:a database for plant circular RNAs[J]. Mol Plant, 2017, 10(8):1126-1128.DOI: 10.1016/j.molp.2017.03.003.
|
[17] |
ZHANG P, DAI M. CircRNA:a rising star in plant biology[J]. J Genet Genomics, 2022, 49(12):1081-1092.DOI: 10.1016/j.jgg.2022.05.004.
|
[18] |
GAO Z, LI J, LUO M, et al. Characterization and cloning of grape circular RNAs identified the cold resistance-related Vv-circATS1[J]. Plant Physiol, 2019, 180(2):966-985.DOI: 10.1104/pp.18.01331.
|
[19] |
ZHOU J P, YUAN M Z, ZHAO Y X, et al. Efficient deletion of multiple circle RNA loci by CRISPR-Cas9 reveals Os06circ02797 as a putative sponge for OsMIR408 in rice[J]. Plant Biotechnol J, 2021, 19(6):1240-1252.DOI: 10.1111/pbi.13544.
|
[20] |
WANG Y S, GAO Y B, ZHANG H X, et al. Genome-wide profiling of circular RNAs in the rapidly growing shoots of moso bamboo (Phyllostachys edulis)[J]. Plant Cell Physiol, 2019, 60(6):1354-1373.DOI: 10.1093/pcp/pcz043.
|
[21] |
LI Y Q, YANG Y, KONG B, et al. Identification and characterization of circRNAs under drought stress in moso bamboo (Phyllostachys edulis)[J]. Forests, 2022, 13(3):426.DOI: 10.3390/f13030426.
|
[22] |
MEMCZAK S, JENS M, ELEFSINIOTI A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency[J]. Nature, 2013, 495(7441):333-338.DOI: 10.1038/nature11928.
|
[23] |
GAO Y, ZHANG J Y, ZHAO F Q. Circular RNA identification based on multiple seed matching[J]. Brief Bioinform, 2018, 19(5):803-810.DOI: 10.1093/bib/bbx014.
|
[24] |
KIM D, LANGMEAD B, SALZBERG S L. HISAT:a fast spliced aligner with low memory requirements[J]. Nat Methods, 2015, 12(4):357-360.DOI: 10.1038/nmeth.3317.
|
[25] |
ZHAO H S, GAO Z M, WANG L, et al. Chromosome-level reference genome and alternative splicing atlas of moso bamboo (Phyllostachys edulis)[J]. GigaScience, 2018, 7(10):giy115.DOI: 10.1093/gigascience/giy115.
|
[26] |
ZHENG Q P, BAO C Y, GUO W J, et al. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs[J]. Nat Commun, 2016, 7:11215.DOI: 10.1038/ncomms11215.
|
[27] |
ROBINSON M D, MCCARTHY D J, SMYTH G K. EdgeR:a bioconductor package for differential expression analysis of digital gene expression data[J]. Bioinformatics, 2010, 26(1):139-140.DOI: 10.1093/bioinformatics/btp616.
|
[28] |
CHEN C J, CHEN H, ZHANG Y, et al. TBtools:an integrative toolkit developed for interactive analyses of big biological data[J]. Mol Plant, 2020, 13(8):1194-1202.DOI: 10.1016/j.molp.2020.06.009.
|
[29] |
GRIMES J E, SMALL M F, FRENCH L L, et al. Chlamydiosis in captive white-winged doves (Zenaida asiatica)[J]. Avian Dis, 1997, 41(2):505-508.
|
[30] |
ASHBURNER M, BALL C A, BLAKE J A, et al. Gene ontology:tool for the unification of biology.the gene ontology consortium[J]. Nat Genet, 2000, 25(1):25-29.DOI: 10.1038/75556.
|
[31] |
CHEN T, LIU Y X, HUANG L Q. ImageGP:an easy-to-use data visualization web server for scientific researchers[J]. iMeta, 2022, 1(1):e5.DOI: 10.1002/imt2.5.
|
[32] |
李甜甜. 水稻组蛋白去甲基化酶基因JMJ705的功能研究[D]. 武汉: 华中农业大学, 2014.
|
|
LI T T. Functional analysis of histone demethylase JMJ705in rice[D]. Wuhan: Huazhong Agricultural University, 2014.
|
[33] |
PERRUC E, KINOSHITA N, LOPEZ-MOLINA L. The role of chromatin-remodeling factor PKL in balancing osmotic stress responses during Arabidopsis seed germination[J]. Plant J, 2007, 52(5):927-936.DOI: 10.1111/j.1365-313X.2007.03288.x.
|
[34] |
CHEN G, CUI J W, WANG L, et al. Genome-wide identification of circular RNAs in Arabidopsis thaliana[J]. Front Plant Sci, 2017, 8:1678.DOI: 10.3389/fpls.2017.01678.
|
[35] |
ZHANG P, FAN Y, SUN X P, et al. A large-scale circular RNA profiling reveals universal molecular mechanisms responsive to drought stress in maize and Arabidopsis[J]. Plant J, 2019, 98(4):697-713.DOI: 10.1111/tpj.14267.
|
[36] |
XU Y H, REN Y Z, LIN T B, et al. Identification and characterization of circRNAs involved in the regulation of wheat root length[J]. Biol Res, 2019, 52(1):19.DOI: 10.1186/s40659-019-0228-5.
|
[37] |
LU T T, CUI L L, ZHOU Y, et al. Transcriptome-wide investigation of circular RNAs in rice[J]. RNA, 2015, 21(12):2076-2087.DOI: 10.1261/rna.052282.115.
|
[38] |
MEDINA C A, SAMAC D A, YU L X. Pan-transcriptome identifying master genes and regulation network in response to drought and salt stresses in Alfalfa (Medicago sativa L.)[J]. Sci Rep, 2021, 11(1):17203.DOI: 10.1038/s41598-021-96712-x.
|
[39] |
DASMANDAL T, RAO A R, SAHU S. Identification and characterization of circular RNAs regulating genes responsible for drought stress tolerance in chickpea and soybean[J]. Indian J Genet Plant Breed, 2020, 80(1):1-8.DOI: 10.31742/ijgpb.80.1.1.
|
[40] |
BHATI K K, ALOK A, KUMAR A, et al. Silencing of ABCC13 transporter in wheat reveals its involvement in grain development,phytic acid accumulation and lateral root formation[J]. J Exp Bot, 2016, 67(14):4379-4389.DOI: 10.1093/jxb/erw224.
|
[41] |
LU Q H, WANG Y Q, YANG H B. Effect of exogenous calcium on physiological characteristics of salt tolerance in Tartary buckwheat[J]. Biologia, 2021, 76(12):3621-3630. DOI:10.1007/s11756-021-00904-9.
|
[42] |
EUGENIA DE LA TORRE-HERNANDEZ M, RIVAS-SAN VICENTE M, GREAVES-FERNANDEZ N, et al. Fumonisin B1 induces nuclease activation and salicylic acid accumulation through long-chain sphingoid base build-up in germinating maize[J]. Physiol Mol Plant Pathol, 2010, 74(5/6):337-345.DOI: 10.1016/j.pmpp.2010.05.004.
|
[43] |
DUTILLEUL C, CHAVARRIA H, RÉZÉ N, et al. Evidence for ACD5 ceramide kinase activity involvement in Arabidopsis response to cold stress[J]. Plant Cell Environ, 2015, 38(12):2688-2697.DOI: 10.1111/pce.12578.
|
[44] |
ZHANG Y, ZHAO L M, XIAO H, et al. Knockdown of a novel gene OsTBP2.2 increases sensitivity to drought stress in rice[J]. Genes, 2020, 11(6):629.DOI: 10.3390/genes11060629.
|
[45] |
GAO X, REN F, LU Y T. The Arabidopsis mutant stg1 identifies a function for TBP-associated factor 10 in plant osmotic stress adaptation[J]. Plant Cell Physiol, 2006, 47(9):1285-1294.DOI: 10.1093/pcp/pcj099.
|