[1] |
THOMAS H. Senescence,ageing and death of the whole plant[J]. New Phytol, 2013, 197(3):696-711.DOI: 10.1111/nph.12047.
|
[2] |
KIM J, KIM J H, LYU J I, et al. New insights into the regulation of leaf senescence in Arabidopsis[J]. J Exp Bot, 2018, 69(4):787-799.DOI: 10.1093/jxb/erx287.
|
[3] |
BUCHANAN-WOLLASTON V, PAGE T, HARRISON E, et al. Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis[J]. Plant J, 2005, 42(4):567-585.DOI: 10.1111/j.1365-313X.2005.02399.x.
|
[4] |
PENFOLD C A, BUCHANAN-WOLLASTON V. Modelling transcriptional networks in leaf senescence[J]. J Exp Bot, 2014, 65(14):3859-3873.DOI: 10.1093/jxb/eru054.
|
[5] |
GUO Y, CAI Z, GAN S. Transcriptome of Arabidopsis leaf senescence[J]. Plant Cell Environ, 2004, 27(5):521-549.DOI: 10.1111/j.1365-3040.2003.01158.x.
|
[6] |
RUSHTON P J, SOMSSICH I E, RINGLER P, et al. WRKY transcription factors[J]. Trends Plant Sci, 2010, 15(5):247-258.DOI: 10.1016/j.tplants.2010.02.006.
|
[7] |
RUSHTON P J, TORRES J T, PARNISKE M, et al. Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes[J]. EMBO J, 1996, 15(20):5690-5700.
|
[8] |
EULGEM T, RUSHTON P J, ROBATZEK S, et al. The WRKY superfamily of plant transcription factors[J]. Trends Plant Sci, 2000, 5(5):199-206.DOI: 10.1016/S1360-1385(00)01600-9.
|
[9] |
ROBATZEK S, SOMSSICH I E. A new member of the Arabidopsis WRKY transcription factor family,AtWRKY6,is associated with both senescence-and defence-related processes[J]. Plant J, 2001, 28(2):123-133.DOI: 10.1046/j.1365-313x.2001.01131.x.
|
[10] |
ROBATZEK S, SOMSSICH I E. Targets of AtWRKY6 regulation during plant senescence and pathogen defense[J]. Genes Dev, 2002, 16(9):1139-1149.DOI: 10.1101/gad.222702.
|
[11] |
CHEN L G, XIANG S Y, CHEN Y L, et al. Arabidopsis WRKY45 interacts with the DELLA protein RGL1 to positively regulate age-triggered leaf senescence[J]. Mol Plant, 2017, 10(9):1174-1189.DOI: 10.1016/j.molp.2017.07.008.
|
[12] |
GUO P R, LI Z H, HUANG P X, et al. A tripartite amplification loop involving the transcription factor WRKY75,salicylic acid,and reactive oxygen species accelerates leaf senescence[J]. Plant Cell, 2017, 29(11):2854-2870.DOI: 10.1105/tpc.17.00438.
|
[13] |
ZHANG H Y, ZHANG L P, WU S G, et al. AtWRKY75 positively regulates age-triggered leaf senescence through gibberellin pathway[J]. Plant Divers, 2020, 43(4):331-340.DOI: 10.1016/j.pld.2020.10.002.
|
[14] |
BESSEAU S, LI J, PALVA E T. WRKY54 and WRKY70 co-operate as negative regulators of leaf senescence in Arabidopsis thaliana[J]. J Exp Bot, 2012, 63(7):2667-2679.DOI: 10.1093/jxb/err450.
|
[15] |
JIANG Y J, LIANG G, YANG S Z, et al. Arabidopsis WRKY57 functions as a node of convergence for jasmonic acid-and auxin-mediated signaling in jasmonic acid-induced leaf senescence[J]. Plant Cell, 2014, 26(1):230-245.DOI: 10.1105/tpc.113.117838.
|
[16] |
MIAO Y, LAUN T, ZIMMERMANN P, et al. Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis[J]. Plant Mol Biol, 2004, 55(6):853-867.DOI: 10.1007/s11103-005-2142-1.
|
[17] |
ZENTGRAF U, LAUN T, MIAO Y. The complex regulation of WRKY53 during leaf senescence of Arabidopsis thaliana[J]. Eur J Cell Biol, 2010, 89(2/3):133-137.DOI: 10.1016/j.ejcb.2009.10.014.
|
[18] |
ZHOU X, JIANG Y J, YU D Q. WRKY22 transcription factor mediates dark-induced leaf senescence in Arabidopsis[J]. Mol Cells, 2011, 31(4):303-313.DOI: 10.1007/s10059-011-0047-1.
|
[19] |
LI Z H, PENG J Y, WEN X, et al. Gene network analysis and functional studies of senescence-associated genes reveal novel regulators of Arabidopsis leaf senescence[J]. J Integr Plant Biol, 2012, 54(8):526-539.DOI: 10.1111/j.1744-7909.2012.01136.x.
|
[20] |
ZHANG S C, LI C, WANG R, et al. The Arabidopsis mitochondrial protease FtSH4 is involved in leaf senescence via regulation of WRKY-dependent salicylic acid accumulation and signaling[J]. Plant Physiol, 2017, 173(4):2294-2307.DOI: 10.1104/pp.16.00008.
|
[21] |
RUSHTON D L, TRIPATHI P, RABARA R C, et al. WRKY transcription factors:key components in abscisic acid signalling[J]. Plant Biotechnol J, 2012, 10(1):2-11.DOI: 10.1111/j.1467-7652.2011.00634.x.
|
[22] |
WANG S G. Bamboo sheath: a modified branch based on the anatomical observations[J]. Sci Rep, 2017, 7(1):16132.DOI: 10.1038/s41598-017-16470-7.
|
[23] |
丁雨龙, 林树燕, 魏强. 竹子发育生物学研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(6):23-40.
|
|
DING Y L, LIN S Y, WEI Q, et al. Advance in developmental biology of bamboos[J]. J Nanjing For Univ (Nat Sci Ed), 2022, 46(6):23-40. DOI: 10.12302/j.issn.1000-2006.202208067.
|
[24] |
CHEN M, JU Y, AHMAD Z, et al. Multi-analysis of sheath senescence provides new insights into bamboo shoot development at the fast growth stage[J]. Tree Physiol, 2021, 41(3):491-507.DOI: 10.1093/treephys/tpaa140.
|
[25] |
ROLLAND F, BAENA-GONZALEZ E, SHEEN J. Sugar sensing and signaling in plants:conserved and novel mechanisms[J]. Annu Rev Plant Biol, 2006, 57:675-709.DOI: 10.1146/annurev.arplant.57.032905.105441.
|
[26] |
WINGLER A, ROITSCH T. Metabolic regulation of leaf senescence:interactions of sugar signalling with biotic and abiotic stress responses[J]. Plant Biol, 2008, 10(Suppl 1):50-62.DOI: 10.1111/j.1438-8677.2008.00086.x.
|
[27] |
FINN R D, CLEMENTS J, ARNDT W, et al. HMMER web server:2015 update[J]. Nucleic Acids Res, 2015, 43(W1):W30-W38.DOI: 10.1093/nar/gkv397.
|
[28] |
DARRIBA D, TABOADA G L, DOALLO R, et al. ProtTest 3:fast selection of best-fit models of protein evolution[J]. Bioinformatics, 2011, 27(8):1164-1165.DOI: 10.1093/bioinformatics/btr088.
|
[29] |
KOZLOV A M, DARRIBA D, FLOURI T, et al. RAxML-NG:a fast,scalable and user-friendly tool for maximum likelihood phylogenetic inference[J]. Bioinformatics, 2019, 35(21):4453-4455.DOI: 10.1093/bioinformatics/btz305.
|
[30] |
HAN M, KIM C Y, LEE J, et al. OsWRKY42 represses OsMT1d and induces reactive oxygen species and leaf senescence in rice[J]. Mol Cells, 2014, 37(7):532-539.DOI: 10.14348/molcells.2014.0128.
|
[31] |
QIU D Y, XIAO J, XIE W B, et al. Exploring transcriptional signalling mediated by OsWRKY13,a potential regulator of multiple physiological processes in rice[J]. BMC Plant Biol, 2009, 9:74.DOI: 10.1186/1471-2229-9-74.
|
[32] |
KANG K, PARK S, NATSAGDORJ U, et al. Methanol is an endogenous elicitor molecule for the synthesis of tryptophan and tryptophan-derived secondary metabolites upon senescence of detached rice leaves[J]. Plant J, 2011, 66(2):247-257.DOI: 10.1111/j.1365-313X.2011.04486.x.
|
[33] |
KIM D, PAGGI J M, PARK C, et al. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype[J]. Nat Biotechnol, 2019, 37(8):907-915.DOI: 10.1038/s41587-019-0201-4.
|
[34] |
TRAPNELL C, ROBERTS A, GOFF L, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks[J]. Nat Protoc, 2012, 7(3):562-578.DOI: 10.1038/nprot.2012.016.
|
[35] |
WEI Q, GUO L, JIAO C, et al. Characterization of the developmental dynamics of the elongation of a bamboo internode during the fast growth stage[J]. Tree Physiol, 2019, 39(7):1201-1214.DOI: 10.1093/treephys/tpz063.
|
[36] |
张宪政. 植物叶绿素含量测定:丙酮乙醇混合液法[J]. 辽宁农业科学, 1986(3):26-28.
|
|
ZHANG X Z. Determination of chlorophyll content in plants: acetone-ethanol mixed solution method[J]. Liaoning Agric Sci, 1986(3):26-28.
|
[37] |
WELTI R, LI W Q, LI M Y, et al. Profiling membrane lipids in plant stress responses[J]. J Biol Chem, 2002, 277(35):31994-32002.DOI: 10.1074/jbc.m205375200.
|
[38] |
SCHMITTGEN T D, LIVAK K J. Analyzing real-time PCR data by the comparative C(T) method[J]. Nat Protoc, 2008, 3(6):1101-1108.DOI: 10.1038/nprot.2008.73.
|
[39] |
ROSS C A, LIU Y E, SHEN Q J. The WRKY gene family in rice (Oryza sativa)[J]. J Integr Plant Biol, 2007, 49(6):827-842.DOI: 10.1111/j.1744-7909.2007.00504.x.
|
[40] |
LI L, MU S H, CHENG Z C, et al. Characterization and expression analysis of the WRKY gene family in moso bamboo[J]. Sci Rep, 2017, 7(1):6675.DOI: 10.1038/s41598-017-06701-2.
|