
大气CO2浓度升高对红豆树苗木光合生理和形态的影响
韦忆, 韦小丽, 王明彬, 王嫚, 余大龙
南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (6) : 124-132.
大气CO2浓度升高对红豆树苗木光合生理和形态的影响
Effects of elevated atmospheric CO2 concentration on the photosynthetic physiology and morphology of Ormosia hosiei seedlings
【目的】揭示珍稀濒危树种红豆树(Ormosia hosiei)在未来气候变化情景下对大气CO2浓度升高的响应策略,预测未来其生存状况并采取有效应对措施。【方法】将2年生红豆树苗种植在开顶式气室(OTC)中模拟大气CO2浓度升高的影响,设置400(CK)、600(E1)和800 μmol/mol(E2)3个CO2浓度,处理146 d后分析升高CO2浓度对红豆树苗光合生理、叶片表观特征和解剖特性的影响。【结果】①大气CO2浓度升高使红豆树苗光合生理参数保持较高水平,其叶绿素和类胡萝卜素分别在E2处理下较CK增加了8.65%、23.47%,核酮糖-1,5-二磷酸核酮糖加氧/羧化酶(RuBisCO)和核酮糖-1,5-二磷酸核酮糖加氧/羧化酶活化酶(RCA)活性分别在E2处理下较CK提高了25.11%、85.36%,净光合速率在E2处理下较CK增加235.40%。叶绿素荧光参数中最大光化学效率Fv/Fm在E2和E1处理下分别较CK显著降低了29.46%、9.12%,而实际光化学效率Y(Ⅱ)在各处理间差异不显著;叶绿素荧光参数中反映光合活性的光化学淬灭系数qP和qL在E2处理下分别较CK显著增加了44.30%、134.84%,而反映热耗散能力的非光化学淬灭系数qN和NPQ对CO2浓度升高的响应不敏感。②在叶片形态和表观特征方面,高CO2浓度环境中的红豆树苗叶面积增大但叶片厚度变薄,比叶重在E2和E1处理下分别较CK减少31.68%、24.26%,且在CO2浓度升高条件下红豆树叶片栅栏组织厚度显著增加,但海绵组织厚度减小。红豆树苗在高浓度CO2环境中光合生理和叶片形态的良好表现,促使红豆树苗高和地径净生长量分别在E2处理下较CK增长了6.90%、13.35%。【结论】大气CO2浓度升高增加了红豆树光合作用底物,提高了其光合系统对光能捕捉和利用的能力,光合活性增加而光保护能力不受影响,苗木叶片形态随CO2浓度升高产生适应性变化。故认为红豆树苗在大气CO2浓度升高条件下通过光合生理和形态改变的协同作用促进其生长。
【Objective】This research aims to reveal a response strategy for the rare and endangered Ormosia hosiei facing of elevated atmospheric CO2 concentration under future climate change, with the hope to forecast its future living conditions and take effective measures to prevent loss. 【Method】Two-year-old O. hosiei seedlings were planted in open-top chambers to simulate the effects of increasing atmospheric CO2 concentration. Three CO2 concentrations, namely 400 (CK), 600 (E1) and 800 μmol/mol (E2) were set. After 146 days of treatment, the effects of elevated CO2 concentration on the photosynthetic physiology, apparent characteristics and leaf anatomical characteristics of the O. hosiei seedlings were analyzed. 【Result】(1) The photosynthetic physiological parameters of the O. hosiei seedlings maintained a high level in the elevated CO2 environment. The chlorophyll and carotenoids in the E2 treatment increased by 8.65% and 23.47%, respectively, compared with CK. The activity of Ribulose-1,5-bisphosphate carboxylase/oxygenase and Ribulose-1,5-bisphosphatecarboxylase/oxygenase activase in the E2 treatment increased by 25.11% and 85.36%, respectively, compared with CK. The net photosynthetic rate in the E2 treatment increased by 235.40% compared with CK. The chlorophyll fluorescence parameters of maximum photochemical efficiency Fv/Fm in the E1 and E2 treatments significantly decreased by 29.46% and 9.12%, respectively, compared with CK, but the Y(Ⅱ) was not significantly different among the treatments. The chlorophyll fluorescence parameters reflected the photochemical quenching coefficient of photosynthetic activity in qP and qL under the E2 treatment. Under CK they significantly increased by 44.30% and 134.84%, respectively, reflecting that the heat dissipation capability of the photochemical quenching coefficients of qN and NPQ was not sensitive to the response to the elevated CO2 concentrations. (2) In terms of leaf morphology and apparent characteristics, the leaf area of the O. hosiei seedlings increased but the leaves became thinner under high CO2 conditions. The specific leaf weight of the O. hosiei seedlings decreased by 31.68% and 24.26% under E2 and E1 compared with CK, respectively. The increased CO2 concentration significantly increased the palisade tissue thickness of the leaves but decreased the sponge tissue thickness. The excellent performance in photosynthetic physiology and leaf morphology of the O. hosiei seedlings under a high CO2 environment increased the height and ground diameter by 6.90% and 13.35% in the E2 treatment compared with CK, respectively. 【Conclusion】 Elevated atmospheric CO2 concentrations increased the photosynthetic substrates of O. hosiei seedlings’, improved the photosynthetic system of light energy capture, and increased photosynthetic activity. Light protection was not affected and the blade shape changed with the elevated CO2 concentration to produce adaptability. Finally, the O. hosiei seedlings under the condition of elevated atmospheric CO2 concentration showed synergistic photosynthetic physiological and morphological changes that promoted growth.
红豆树 / CO2浓度 / 光合生理 / 叶片结构 / 表观特征
Ormosia hosiei / CO2 concentration / photosynthetic physiology / leaf structure / apparent characteristics
[1] |
WMO. The state of greenhouse gases in the atmosphere based on global observations through 2020[J]. WMO Greenhouse Gas Bulletin Organization, 2021, 17:1-9.
|
[2] |
IPCC. Climate change 2022: mitigation of climate change[R]. Contribution of Working Group Ⅲ to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2022.
|
[3] |
王晓, 韦小丽, 吴高殷, 等. CO2浓度升高条件下不同氮素供应对闽楠幼苗光合特性及生长的影响[J]. 林业科学, 2021, 57(4): 173-181.
|
[4] |
张其德, 卢从明, 刘丽娜, 等. CO2浓度倍增对垂柳和杜仲叶绿体吸收光能和激发能分配的影响[J]. 植物学报, 1997, 39(9): 845-848.
|
[5] |
王为民, 王晨, 李春俭, 等. 大气二氧化碳浓度升高对植物生长的影响[J]. 西北植物学报, 2000, 20(4): 676-683.
|
[6] |
|
[7] |
|
[8] |
王晓. CO2浓度升高条件下氮素调控闽楠幼苗光合适应的机理研究[D]. 贵阳: 贵州大学, 2020.
|
[9] |
徐胜, 陈玮, 何兴元, 等. 高浓度CO2对树木生理生态的影响研究进展[J]. 生态学报, 2015, 35(8): 2452-2460.
|
[10] |
王勋陵, 王静. 植物形态结构与环境[M]. 兰州: 兰州大学出版社, 1989: 105-138.
|
[11] |
|
[12] |
国家林业局,农业农村部. 国家重点保护野生植物名录[N]. 2021-09-07.
SFA, MARA. List of national key protected wild plants in China[N]. 2021-09-07.
|
[13] |
赵颖, 何云芳, 周志春, 等. 浙闽五个红豆树自然保留种群的遗传多样性[J]. 生态学杂志, 2008, 27(8): 1279-1283.
|
[14] |
郑天汉. 红豆树生物生态学特征研究[D]. 福州: 福建农林大学, 2007.
|
[15] |
张群芳, 彭培好, 王娟, 等. 不同干扰条件下红豆树种群数量特征的比较[J]. 植物研究, 2015, 35(5): 735-740.
|
[16] |
韩豪, 罗长能, 韦小丽, 等. 红豆树幼树生长和生理对不同岩性土壤的响应[J]. 北方园艺, 2020(13): 59-65.
|
[17] |
刘鹏, 阙生全, 刘丽婷, 等. 红豆树研究现状及濒危保护建议[J]. 亚热带植物科学, 2017, 46(1): 96-100.
|
[18] |
芮雯奕, 田云录, 张纪林, 等. 干旱胁迫对6个树种叶片光合特性的影响[J]. 南京林业大学学报(自然科学版), 2012, 36(1): 68-72.
|
[19] |
刘燕. 深色有隔内生真菌调控红豆树生长及耐旱响应机理[D]. 贵阳: 贵州大学, 2020.
|
[20] |
陈章和, 林丰平, 张德明. 高CO2浓度下4种豆科乔木种子萌发和幼苗生长[J]. 植物生态学报, 1999, 23(2): 161.
|
[21] |
林丰平, 陈章和, 陈兆平, 等. 高CO2浓度下豆科4种乔木幼苗的生理生化反应[J]. 植物生态学报, 1999, 23(3): 220.
|
[22] |
段洪浪. OTC中植物与土壤碳积累对C-N交互的响应与适应[D]. 北京: 中国科学院华南植物研究所, 2009.
|
[23] |
邱浩杰, 孙杰杰, 徐达, 等. 末次盛冰期以来红豆树在不同气候变化情景下的分布动态[J]. 生态学报, 2020, 40(9): 3016-3026.
|
[24] |
邹琦. 植物生理学实验指导[M]. 北京: 中国农业出版社, 2000: 68-75.
|
[25] |
吕冬霞. 细胞生物学实验技术[M]. 北京: 科学出版社, 2012.
|
[26] |
王学奎. 植物生理生化实验原理和技术[M]. 2版. 北京: 高等教育出版社, 2006.
|
[27] |
潘瑞炽. 植物生理学[M]. 7版. 北京: 高等教育出版社, 2012.
|
[28] |
王建波, 倪红伟, 付小玲, 等. 大气CO2浓度升高对小叶章光合色素含量和光合参数的影响[J]. 国土与自然资源研究, 2013(1): 82-83.
|
[29] |
潘鸿, 曹吉鑫, 陈展, 等. CO2浓度升高对木荷幼苗光合特征的影响[J]. 生态学杂志, 2022, 41(5): 865-872.
|
[30] |
叶思源, 尚鹤, 陈展, 等. 不同浓度CO2对马尾松幼苗光合特性及单萜烯释放的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(6): 71-78.
|
[31] |
何平. 大气温室效应与植物光合性大气CO2浓度升高对油桐和烟草光合气体交换及叶的脂类组成的影响[J]. 中南林学院学报, 1998, 18(3): 17-22.
|
[32] |
蒋跃林, 张仕定, 张庆国. 大气CO2浓度升高对茶树光合生理特性的影响[J]. 茶叶科学, 2005, 25(1): 43-48.
|
[33] |
孟宇辰, 洛方舟, 张嘉烁, 等. 高浓度CO2对林木光合和呼吸作用影响研究进展[J]. 辽宁林业科技, 2016(1): 41-45.
|
[34] |
宝俐, 董金龙, 李汛, 等. CO2浓度升高和氮素供应对黄瓜叶片光合色素的影响[J]. 土壤, 2016, 48(4): 653-660.
|
[35] |
|
[36] |
|
[37] |
|
[38] |
张远彬. CO2浓度升高对红桦幼苗生理与生长的影响[D]. 成都: 中国科学院研究生院(成都生物研究所), 2007.
|
[39] |
冷平生, 马世超, 李树蓉, 等. 增施CO2气肥对国槐幼苗生长与生理特性的影响[J]. 林业科学, 2002, 38(1): 44-49.
|
[40] |
谢会成, 姜志林. 栓皮栎对CO2增长的生理生态响应[J]. 西南林学院学报, 2002, 22(1): 1-4.
|
[41] |
|
[42] |
侯晶东, 曹兵, 宋丽华. CO2浓度倍增对宁夏枸杞光合特性的影响[J]. 南京林业大学学报(自然科学版), 2012, 36(5): 71-76.
|
[43] |
|
[44] |
张兆斌. CO2、温度升高对柿幼树光合作用及水分利用效率影响的研究[D]. 泰安: 山东农业大学, 2009.
|
[45] |
张仟雨, 宗毓铮, 董琦. 大气CO2浓度升高对大豆光合生理的影响[J]. 山西农业科学, 2016, 44(11): 1675-1679.
|
[46] |
|
[47] |
|
[48] |
王兰兰, 李琦, 宋晓卉, 等. 环境条件对植物叶绿素荧光参数影响研究进展[J]. 沈阳师范大学学报(自然科学版), 2019, 37(4): 362-367.
|
[49] |
张守仁. 叶绿素荧光动力学参数的意义及讨论[J]. 植物学通报, 1999, 34(4): 444-448.
|
[50] |
|
[51] |
胡晓雪, 杜维俊, 杨珍平, 等. 大气CO2浓度和气温升高对野生大豆光合作用的影响[J]. 山西农业科学, 2015, 43(7): 798-801, 853.
|
[52] |
邢璐. 银杏(Ginkgo biloba L.)幼苗叶片光合特性及气孔参数对CO2浓度升高的响应[D]. 南京: 南京农业大学, 2009.
|
[53] |
|
[54] |
韩梅, 吉成均, 左闻韵, 等. CO2浓度和温度升高对11种植物叶片解剖特征的影响[J]. 生态学报, 2006, 26(2): 326-333.
|
[55] |
孙嘉伟, 罗丽莹, 李淑英, 等. 闽楠叶片功能性状及表型可塑性对其与杉木混交的响应[J]. 生态学报, 2021, 41(7): 2855-2866.
|
/
〈 |
|
〉 |