基于TLS的抚育间伐对长白落叶松干形的影响

高谢雨, 董利虎, 郝元朔

南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (6) : 85-94.

PDF(26559 KB)
PDF(26559 KB)
南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (6) : 85-94. DOI: 10.12302/j.issn.1000-2006.202211012
研究论文

基于TLS的抚育间伐对长白落叶松干形的影响

作者信息 +

Effects of thinning on Larix olgensis plantation stem form based on TLS

Author information +
文章历史 +

摘要

【目的】探究利用地基激光雷达技术(Terrestrial Laser Scanning,TLS)评价树干形状的可行性,并分析不同间伐方案对人工黄花落叶松(长白落叶松,Larix olgensis)干形的影响。【方法】在黑龙江省佳木斯市孟家岗林场选取5块采用不同间伐处理方案的长白落叶松人工林样地进行地基激光雷达扫描,对预处理后的点云进行单木分割与单木枝干分离,并进一步提取出单木胸径、树高及不同高度处直径等参数,最终计算单木干形的指标并进行理论造材,分析不同间伐方案对人工长白落叶松干形及林分经济价值的影响。【结果】通过与样地实测单木数据对比,基于TLS数据提取得到的单木特征参数精度较高,胸径提取的平均误差仅为-0.39 cm,平均绝对误差百分比达到2.86%,树高提取的平均误差为-0.26 m,平均绝对误差百分比为3.12%;所有间伐措施均能提高林木的胸径和材积,而树高在不同间伐方案之间没有明显差异;林木的干形指标如胸高形数(f1.3)、胸高形率(q2)及材积分配方式等在不同的间伐方案中表现有所不同,两次高强度间伐的方式使树干材积更多地分配在树干中部;同一林分内不同大小的树木之间干形并无显著性差异;不同的间伐方案对树木根张程度并无影响;不同的间伐方案均可以不同程度的提高林分经济价值。【结论】地基激光雷达对单木参数提取精度较高,能够在无损情况下获取较为准确的单木干形特征;不同间伐方案对树木干形及林分经济价值有不同程度的影响,两次高强度间伐可以最大限度地提升林分的经济价值。

Abstract

【Objective】 The study explored the feasibility of terrestrial laser scanning (TLS) technology to evaluate the stem form, and analyzed the influence of different thinning measures on the stem form of Larix olgensis plantations. 【Method】 Five sample plots of L. olgensis plantations with different thinning measures in the Mengjiagang Forest Farm, Jiamusi City, Heilongjiang Province, were used to acquire TLS data. The preprocessed point clouds were first segmented into individual trees and classified into stem and non-stem points. Parameters that included diameter breast height, tree height, and diameter at different heights were further extracted. Finally, the indices of individual tree stem forms were calculated, theoretical timber was made, and the effects of different thinning measures on L. olgensis plantation stem form and stand economic value were analyzed. 【Result】 Compared to field-measured trees, the accuracy of individual tree characteristic parameters extracted based on TLS data was satisfactory. The error results of diameter breast height showed that ME was only -0.39 cm, MAPE was 2.86%, ME extracted from tree height was -0.26 m, and MAPE was 3.12%. All thinning measures improved the diameter breast height and volume growth of individual trees. There was no significant difference in tree height among the different thinning measures. The stem form indices of trees, such as and the volume distribution mode, differed in the different thinning methods, with the stem volume more distributed in the middle of the stem. Stem forms of different sizes did not significantly differ at the same site. The different thinning methods had no effect on the degree of tree root extension. Different thinning measures improved the economic value of stands in different degrees. 【Conclusion】 TLS exhibits high precision in extracting parameters of individual trees and can be used to obtain the dry shape characteristics of individual trees without destructive sampling. Different thinning measures have different effects on tree stem form and economic value of stands. The two high-intensity thinning measures can maximize the economic value of stands. These results provide a reference for forestry production practices in northeast China.

关键词

长白落叶松 / 抚育间伐 / 地基激光雷达 / 干形

Key words

Larix olgensis / thinning measestrial / terrestrial laser scanning(TLS) / stem form

引用本文

导出引用
高谢雨, 董利虎, 郝元朔. 基于TLS的抚育间伐对长白落叶松干形的影响[J]. 南京林业大学学报(自然科学版). 2023, 47(6): 85-94 https://doi.org/10.12302/j.issn.1000-2006.202211012
GAO Xieyu, DONG Lihu, HAO Yuanshuo. Effects of thinning on Larix olgensis plantation stem form based on TLS[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2023, 47(6): 85-94 https://doi.org/10.12302/j.issn.1000-2006.202211012
中图分类号: S758   

参考文献

[1]
韩飞. 落叶松人工林削度方程的研究[D]. 哈尔滨: 东北林业大学, 2010.
HAN F. The study of taper equation for Larix Olgensis plantation[D]. Harbin: Northeast Forest University, 2010.
[2]
SANQUETTA M N, MCTAGUE J P, FERRACO S H, et al. What factors should be accounted for when developing a generalized taper function for black wattle trees?[J]. Canadian Journal of Forest Research, 2020, 50(11): 1113-1123. DOI: 10.1139/cjfr-2020-0163.
[3]
LIU Y, YUE C F, WEI X H, et al. Tree profile equations are significantly improved when adding tree age and stocking degree: an example for Larix gmelinii in the Greater Khingan Mountains of Inner Mongolia, northeast China[J]. European Journal of Forest Research, 2020, 139(3): 443-458.DOI: 10.1007/s10342-020-01261-z.
[4]
LI R, WEISKITTEL A R. Comparison of model forms for estimating stem taper and volume in the primary conifer species of the north American Acadian region[J]. Annals of Forest Science, 2010, 67(3): 302. DOI: 10.1051/forest/2009109.
[5]
MÄKINEN H, ISOMÄKI A. Thinning intensity and growth of Norway spruce stands in Finland[J]. Forestry, 2004, 77(4): 349-364. DOI: 10.1093/forestry/77.4.349.
[6]
BEESE W J, ARNOTT J T. Montane alternative silvicultural systems (MASS): establishing and managing a multi-disciplinary, multi-partner research site[J]. The Forestry Chronicle, 1999, 75(3): 413-416. DOI: 10.5558/tfc75413-3
[7]
IGNACIO B, MARTA P, RAFAEL C, et al. Effect of stand structure on Stone pine (Pinus pinea L.) regeneration dynamics[J]. Journal of Forest Researc. 2008, 81(5): 617-629. DOI: 10.1093/forestry/cpn037.
[8]
陈哲, 魏浩亮, 周庆营, 等. 抚育间伐对华北落叶松人工林林分结构的影响[J]. 中南林业科技大学学报, 2022, 42(5): 54-64.
CHEN Z, WEI H L, ZHOU Q Y, et al. Influence of tending and thinning on the stand structure of Larix principis-rupprechtii plantations[J]. Journal of Central South University of Forestry & Technology, 2022, 42(5): 54-64. DOI:10.14067/j.cnki.1673-923x.2022.05.006.
[9]
LIANG X, KANKARE V, YU X, et al. Automated stem curve measurement using terrestrial laser scanning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(3): 1739-1748. DOI: 10.1109/TGRS.2013.2253783.
[10]
KANKARE V, HOLOPAINEN M, VASTARANTA M, et al. Individual tree biomass estimation using terrestrial laser scanning[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 75: 64-75. DOI: 10.1016/j.isprsjprs.2012.10.003.
[11]
DISNEY M, HOLOPAINEN M, VASTARANTA M, et al. Fast automatic precision tree models from terrestrial laser scanner data[J]. Remote Sensing, 2013, 5(2): 491-520. DOI: 10.3390/rs5020491.
[12]
SAARINEN N, KANKARE V, VASTARANTA M, et al. Feasibility of terrestrial laser scanning for collecting stem volume information from single trees[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 123: 140-158. DOI: 10.1016/j.isprsjprs.2016.11.012.
[13]
HACKENBERG J, MORHART C, SHEPPARD J, et al. Highly accurate tree models derived from terrestrial laser scan data: a method description[J]. Forests, 2014, 5(5): 1069-1105. DOI: 10.3390/f5051069.
[14]
SAARINEN N, KANKARE V, PYÖRÄLÄ J, et al. Assessing the effects of sample size on parametrizing a taper curve equation and the resultant stem-volume estimates[J]. Forests, 2019, 10(10):848-868. DOI: 10.3390/f10100848.
[15]
VILLE L, YRTTIMAA T, KANKARE V, et al. Revealing changes in the stem form and volume allocation in diverse boreal forests using two-date terrestrial laser scanning[J]. Forests, 2021, 12(7): 835-855. DOI: 10.3390/F12070835.
[16]
顾海波, 熊子月, 温小荣, 等. 基于地基激光数据的杨树干形分析[J]. 中南林业科技大学学报, 2019, 39(6): 72-77.
GU H B, XIONG Z Y, WEN X R, et al. Analysis of poplar stem form based on terrestrial laser scan[J]. Journal of Central South University of Forestry & Technology, 2019, 39(6): 72-77. DOI: 10.14067/j.cnki.1673-923x.2019.06.011.
[17]
SAARINEN N, KANKARE V, YRTTIMAA T, et al. Assessing the effects of thinning on stem growth allocation of individual Scots pine trees[J]. Forest Ecology and Management, 2020, 474: 118134. DOI: 10.1016/j.foreco.2020.118344.
[18]
孙志虎, 王秀琴, 陈祥伟. 不同抚育间伐强度对落叶松人工林生态系统碳储量影响[J]. 北京林业大学学报, 2016, 38(12): 1-13.
SUN Z H, WANG X Q, CHEN X W. Effects of thinning intensity on carbon storage of Larix olgensis plantation ecosystem[J]. Journal of Beijing Forestry University, 2016, 38(12): 1-13. DOI: 10.13332/j.1000-1522.20160016.
[19]
ZHAO X, GUO Q, SU Y, et al. Improved progressive TIN densification filtering algorithm for airborne LiDAR data in forested areas[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 117: 79-91. DOI: 10.1016/j.isprsjprs.2016.03.016.
[20]
TAO S, WU F, GUO Q, et al. Segmenting tree crowns from terrestrial and mobile LiDAR data by exploring ecological theories[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 110: 66-76. DOI: 10.1016/j.isprsjprs.2015.10.007.
[21]
YRTTIMAA T, SAARINEN N, KANKARE V, et al. Investigating the feasibility of multi-scan terrestrial laser scanning to characterize tree communities in southern boreal forests[J]. Remote Sensing, 2019, 11(12): 1423. DOI: 10.3390/rs11121423.
[22]
李凤日. 测树学[M]. 北京: 中国林业出版社, 2019: 1-397.
LI F R. Forest mensuration[M]. Beijing: China Forestry Publishing House, 2019: 1-397.
[23]
JONSSON B. Thinning response functions for single trees of Pinus sylvestris L. and Picea abies (L.) Karst[J]. Scandinavian Journal of Forest Research, 1995, 10(1/4): 353-369. DOI: 10.1080/02827589509382902.
[24]
TOMMI R, MARTTI V. Precommercial thinning in naturally regenerated Scots pine stands in northern Finland[J]. Silva Fennica, 1997, 31(4): 401-415. DOI: 10.14214/sf.a8537.
[25]
VALINGER E, SJÖGREN H, NORD G, et al. Effects on stem growth of Scots pine 33 years after thinning and/or fertilization in northern Sweden[J]. Scandinavian Journal of Forest Research, 2019, 34(1): 33-38. DOI: 10.1080/02827581.2018.1545920.
[26]
MÄKINEN H, ISOMÄKI A. Thinning intensity and long-term changes in increment and stem form of Scots pine trees[J]. Forest Ecology and Management, 2004, 203(1): 21-34. DOI: 10.1016/j.foreco.2004.07.028.
[27]
MÄKINEN H, HYNYNEN J, ISOMÄKI A. Intensive management of Scots pine stands in southern Finland: first empirical results and simulated further development[J]. Forest Ecology and Management, 2005, 215(1): 37-50. DOI: 10.1016/j.foreco.2005.03.069.
[28]
王树力, 刘大兴. 落叶松人工林林分结构与数量成熟龄的研究[J]. 东北林业大学学报, 1992, 20(2): 1-8.
WANG S L, LIU D X. Study on the stand constitution and the quantitative mature age of larch plantation[J]. Journal of Northeast Forestry University, 1992, 20(2): 1-8. DOI:10.13759/j.cnki.dlxb.1992.02.001
[29]
孙楠, 张怡春, 赵眉芳. 长白落叶松人工林根系生物量及其垂直分布特征[J]. 森林工程, 2021, 37(6):17-24, 67.
SUN N, ZHANG Y C, ZHAO M F. Root biomass and vertical distribution characteristics of larch plantation[J]. Forest Engineering, 2021, 37(6):17-24, 67.
[30]
SMITH D, LARSON B, KELTY M, et al. The practice of silviculture: applied forest ecology[M]. New York: John Wiley and Sons, Inc., 1997.
[31]
VALENTINE H T, GREGOIRE T G. A switching model of bole taper[J]. Canadian Journal of Forest Research, 2001, 31(8): 1400-1409. DOI: 10.1139/x01-061.
[32]
LIANG X, KANKARE V, HYYPPÄ J, et al. Terrestrial laser scanning in forest inventories[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 115:63-77. DOI: 10.1016/j.isprsjprs.2016.01.006.
[33]
MÄKINEN H, ISOMÄKI A. Thinning intensity and long-term changes in increment and stem form of Norway spruce trees[J]. Forest Ecology and Management, 2004, 201(2): 295-309. DOI: 10.1016/j.foreco.2004.07.017.

脚注

基金

国家重点研发计划(2022YFD2201000)

编辑: 李燕文
PDF(26559 KB)

Accesses

Citation

Detail

段落导航
相关文章

/