南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (6): 1-8.doi: 10.12302/j.issn.1000-2006.202302020
国颖(), 杨港归(), 吴雨涵, 何杰, 何玉洁, 廖浩然, 薛良交()
收稿日期:
2023-02-18
修回日期:
2023-06-21
出版日期:
2023-11-30
发布日期:
2023-11-23
通讯作者:
*薛良交(基金资助:
GUO Ying(), YANG Ganggui(), WU Yuhan, HE Jie, HE Yujie, LIAO Haoran, XUE Liangjiao()
Received:
2023-02-18
Revised:
2023-06-21
Online:
2023-11-30
Published:
2023-11-23
摘要:
植物细胞具有全能性,创伤和外源激素能够诱导已分化细胞的重编程来再生新的植株,发展的植物组织培养技术已广泛应用于植物快速繁殖、种质保存和性状改良等多个方面。然而,对植物组织培养过程中细胞如何保持分化状态和发育可塑性的分子调控机制仍知之甚少,尤其是在表观遗传学水平上。DNA甲基化是一种进化上保守的表观遗传修饰,能够复杂地协调植物细胞全能性建立和影响其命运转变。在此,以组织培养过程中的愈伤组织形成、体细胞胚发生为切入点,总结了DNA甲基化参与植物再生过程的最新进展。首先,分析了不同植物再生过程中全基因组DNA甲基化变化模式,认为外植体类型和再生阶段均会对DNA甲基化水平产生影响;其次,重点研究了甲基化转移酶(MET1)等在植物再生过程中的作用,以及DNA甲基化调控再生基因表达的分子机制,包括BBM(baby boom),WOX(wuschel-related homeobox),WIN(wound induced dedifferentiation)等基因,最后,讨论了DNA甲基化在植物再生领域的未来研究方向,指出组织培养与基因工程的结合将为农作物和经济、用材林木的高效繁殖和精准培育提供机遇。
中图分类号:
国颖,杨港归,吴雨涵,等. DNA甲基化调控植物组织培养过程的分子机制研究进展[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 1-8.
GUO Ying, YANG Ganggui, WU Yuhan, HE Jie, HE Yujie, LIAO Haoran, XUE Liangjiao. Recent advances in molecular regulatory mechanisms of DNA methylation in plant tissue culture[J].Journal of Nanjing Forestry University (Natural Science Edition), 2023, 47(6): 1-8.DOI: 10.12302/j.issn.1000-2006.202302020.
图1
DNA甲基化动态变化影响愈伤组织生长模式 a. DNA甲基化在基因体中分布模式及其对愈伤组织形成的影响:褐色圆圈代表高甲基化水平抑制基因表达而导致愈伤组织褐化;绿色圆圈代表低甲基化水平促进基因表达进而促进愈伤组织生长the distribution pattern of DNA methylation in gene bodies and its effect on callus formation. Brown circles represent high methylation levels that inhibit gene expression and lead to callus browning, green circles represent a low methylation level that enhance gene expression to promote callus growth;b. DNA甲基化对转座元件表达影响:蓝色矩形颜色由深至浅表示DNA甲基化水平由高至低的变化;灰色矩形颜色由深至浅表示转座子表达由高至低的变化effects of DNA methylation on the expression of transposable elements (TEs).Blue rectangle colors from dark to light indicate changes in DNA methylation levels of TE from high to low, gray rectangle colors from dark to light indicate changes in TE expression from high to low."
表1
植物组织培养发育过程中DNA甲基化对植物再生关键基因影响"
序号 No. | 基因名称 gene symbol | 功能 function | 物种 species |
---|---|---|---|
1 | ARR3 (arabidopsis response regulator 3) | 参与细胞分裂素调节;5-azaC处理后基因表达上调,发生低甲基化促进桃叶片愈伤组织诱导 | 桃 Prunus persica[ |
2 | BBM (baby boom) | 影响体细胞胚胎发生;表达量升高,甲基化水平降低促进胚胎发生(胚性愈伤组织中高表达) | 凹唇姜 Boesenbergia rotunda[ |
3 | CRY1 (cryptochrome 1) | 调节细胞分裂素信号,促进芽再生器官的新生 | 拟南芥 Arabidopsis thaliana[ |
4 | CCD1 (carotenoid cleavage dioxygenases 1) | 降解类胡萝卜素;5-azaC处理导致全基因组去甲基化,类胡萝卜素含量降低 | 柑橘 Citrus paradisi[ |
5 | CMT2/CMT3 (chromomethylase 2/chromomethylase 3) | 参与mCHG维持;5-azaC处理抑制了叶外植体愈伤组织的形成和不定芽再生 | 草莓 Fragaria vesca[ |
6 | CMT3 (chromomethylase 3) | 维持DNA甲基化;5-azaC处理后基因表达显著下调,DNA甲基化降低促进桃叶片愈伤组织诱导 | 桃 P. persica[ |
维持DNA甲基化;表达量升高DNA甲基化水平降低,促进体细胞胚胎的发生和再生 | 凹唇姜 B. rotunda[ | ||
7 | DRM2 (domains rearranged methyltransferase) | 维持CHH甲基化 | 毛果杨 Populus trichocarpa[ |
表达量升高DNA甲基化水平降低,促进体细胞胚胎的发生和再生 | 凹唇姜 B. rotunda[ | ||
8 | 维持CG甲基化;低甲基化,met1-3突变体芽再生能力更高 | 拟南芥 A. thaliana[ | |
MET1 (methyltransferase 1) | 维持DNA甲基化;表达量升高DNA甲基化水平降低,促进体细胞胚胎的发生和再生 | 凹唇姜 B. rotunda[ | |
维持DNA甲基化;幼苗和嫩叶中偏好表达 | 柑橘 C. paradisi[ | ||
9 | ROS1 (repressor of silencing 1) | DNA甲基化水平降低,促进球状胚形成 | 龙眼 Dimocarpus longan[ |
10 | SERK (somatic embryogenesis receptor-like kinase) | 影响体细胞胚胎发生;表达量升高,甲基化水平降低促进胚胎发生(胚性愈伤组织中高表达) | 凹唇姜 B. rotunda[ |
11 | WIN (wound-induced) | 诱导细胞去分化和增殖;发生去甲基化,基因表达上调促进愈伤组织形成 | 草莓 F. nilgerrensis[ |
12 | WOX (wuschel-related homeobox) | 参与顶端分生组织发生;发生去甲基化,基因表达上调促进愈伤组织形成 | 草莓 F. nilgerrensis[ |
13 | WUS (wuschel-related homeobox) | 调控植物再生;低甲基化激活了生长素和WUS相关基因表达,提高植物再生能力 | 棉花 Gossypium hirsutum[ |
影响体细胞胚胎发生;表达量升高,甲基化水平降低促进胚胎发生(分生组织中表达最高,其次是胚性愈伤) | 凹唇姜 B. rotunda[ |
[1] | 赵翔宇. 植物组织培养在林木遗传育种中的应用[J]. 河南农业, 2022(11):51-52. |
ZHAO X Y. Application of plant tissue culture in forest genetic breeding[J]. Agric Henan, 2022(11):51-52.DOI: 10.15904/j.cnki.hnny.2022.11.011. | |
[2] | 巩振辉, 申书兴. 植物组织培养[M]. 3版. 北京: 化学工业出版社, 2022:12-17. |
GONG Z H, SHEN S X. Plant tissue culture[M]. 3rd ed. Beijing: Chemical Industry Press, 2022:12-17. | |
[3] | SIVANESAN I, NAYEEM S, VENKIDASAMY B, et al. Genetic and epigenetic modes of the regulation of somatic embryogenesis:a review[J]. Biol Futur, 2022, 73(3):259-277.DOI: 10.1007/s42977-022-00126-3. |
[4] | 樊龙江. 植物基因组学[M]. 北京: 科学出版社, 2020:68-69. |
FAN L J. Plant genomics[M]. Beijing: Science Press, 2020:68-69. | |
[5] | HE X J, CHEN T P, ZHU J K. Regulation and function of DNA methylation in plants and animals[J]. Cell Res, 2011, 21(3):442-465.DOI: 10.1038/cr.2011.23. |
[6] | LEE K, SEO P J. Dynamic epigenetic changes during plant regeneration[J]. Trends Plant Sci, 2018, 23(3):235-247.DOI: 10.1016/j.tplants.2017.11.009. |
[7] | ZHANG H M, LANG Z B, ZHU J K. Dynamics and function of DNA methylation in plants[J]. Nat Rev Mol Cell Biol, 2018, 19(8):489-506.DOI: 10.1038/s41580-018-0016-z. |
[8] | LEE K, PARK O S, SEO P J. JMJ30-mediated demethylation of H3K9me3 drives tissue identity changes to promote callus formation in Arabidopsis[J]. Plant J, 2018, 95(6):961-975.DOI: 10.1111/tpj.14002. |
[9] | LIU D C, MU Q, LI X Y, et al. The callus formation capacity of strawberry leaf explant is modulated by DNA methylation[J]. Hortic Res, 2022, 9:uhab073.DOI: 10.1093/hr/uhab073. |
[10] | GHOSH A, IGAMBERDIEV A U, DEBNATH S C. Detection of DNA methylation pattern in thidiazuron-induced blueberry callus using methylation-sensitive amplification polymorphism[J]. Biol Plant, 2017, 61(3):511-519.DOI: 10.1007/s10535-016-0678-3. |
[11] | KRIZOVA K, FOJTOVA M, DEPICKER A, et al. Cell culture-induced gradual and frequent epigenetic reprogramming of invertedly repeated tobacco transgene epialleles[J]. Plant Physiol, 2009, 149(3):1493-1504.DOI: 10.1104/pp.108.133165. |
[12] | VINING K, POMRANING K R, WILHELM L J, et al. Methylome reorganization during in vitro dedifferentiation and regeneration of Populus trichocarpa[J]. BMC Plant Biol, 2013, 13:92.DOI: 10.1186/1471-2229-13-92. |
[13] | IKEUCHI M, SUGIMOTO K, IWASE A. Plant callus:mechanisms of induction and repression[J]. Plant Cell, 2013, 25(9):3159-3173.DOI: 10.1105/tpc.113.116053. |
[14] | KARIM R, TAN Y S, SINGH P, et al. Expression and DNA methylation of SERK,BBM,LEC2 and WUS genes in in vitro cultures of Boesenbergia rotunda (L.) Mansf[J]. Physiol Mol Biol Plants, 2018, 24(5):741-751.DOI: 10.1007/s12298-018-0566-8. |
[15] | GAO Y, RAN L, KONG Y, et al. Assessment of DNA methylation changes in tissue culture of Brassica napus[J]. Genetika, 2014, 50(11):1338-1344.DOI: 10.7868/s001667581410004x. |
[16] | ZAKRZEWSKI F, SCHMIDT M, VAN LIJSEBETTENS M, et al. DNA methylation of retrotransposons,DNA transposons and genes in sugar beet (Beta vulgaris L.)[J]. Plant J, 2017, 90(6):1156-1175.DOI: 10.1111/tpj.13526. |
[17] | STROUD H, DING B, SIMON S A, et al. Plants regenerated from tissue culture contain stable epigenome changes in rice[J]. eLife, 2013, 2:e00354.DOI: 10.7554/eLife.00354. |
[18] | SMITH J, SEN S, WEEKS R J, et al. Promoter DNA hypermethylation and paradoxical gene activation[J]. Trends Cancer, 2020, 6(5):392-406.DOI: 10.1016/j.trecan.2020.02.007. |
[19] | MA Q X, ZHOU W Z, ZHANG P. Transition from somatic embryo to friable embryogenic callus in cassava:dynamic changes in cellular structure,physiological status,and gene expression profiles[J]. Front Plant Sci, 2015, 6:824.DOI: 10.3389/fpls.2015.00824. |
[20] | ZENG F S, SUN F K, LIANG N S, et al. Dynamic change of DNA methylation and cell redox state at different micropropagation phases in birch[J]. Trees, 2015, 29(3):917-930.DOI: 10.1007/s00468-015-1174-7. |
[21] | LIN W Q, XIAO X O, ZHANG H N, et al. Whole-genome bisulfite sequencing reveals a role for DNA methylation in variants from callus culture of pineapple (Ananas comosus L.)[J]. Genes, 2019, 10(11):877.DOI: 10.3390/genes10110877. |
[22] | LIZAMORE D, BICKNELL R, WINEFIELD C. Elevated transcription of transposable elements is accompanied by het-siRNA-driven de novo DNA methylation in grapevine embryogenic callus[J]. BMC Genomics, 2021, 22(1):676.DOI: 10.1186/s12864-021-07973-9. |
[23] | SHIM S, LEE H G, PARK O S, et al. Dynamic changes in DNA methylation occur in TE regions and affect cell proliferation during leaf-to-callus transition in Arabidopsis[J]. Epigenetics, 2022, 17(1):41-58.DOI: 10.1080/15592294.2021.1872927. |
[24] | ALI SHAIKH A, CHACHAR S, CHACHAR M, et al. Recent advances in DNA methylation and their potential breeding applications in plants[J]. Horticulturae, 2022, 8(7):562.DOI: 10.3390/horticulturae8070562. |
[25] | BARTELS A, HAN Q, NAIR P, et al. Dynamic DNA methylation in plant growth and development[J]. Int J Mol Sci, 2018, 19(7):2144.DOI: 10.3390/ijms19072144. |
[26] | GAO Y R, SUN J C, SUN Z L, et al. The MADS-box transcription factor CmAGL11 modulates somatic embryogenesis in Chinese chestnut (Castanea mollissima Blume)[J]. J Integr Agric, 2020, 19(4):1033-1043.DOI: 10.1016/S2095-3119(20)63157-4. |
[27] | LUAN A P, CHEN C J, XIE T, et al. Methylation analysis of CpG islands in pineapple SERK1 promoter[J]. Genes, 2020, 11(4):425.DOI: 10.3390/genes11040425. |
[28] | SALAÜN C, LEPINIEC L, DUBREUCQ B. Genetic and molecular control of somatic embryogenesis[J]. Plants, 2021, 10(7):1467.DOI: 10.3390/plants10071467. |
[29] | DE ARAÚJO S I M, GOMES A C M M, SCHERWINSKI-PEREIRA J E. Cellular responses of oil palm genotypes during somatic embryogenesis involve participation of procambial cells,DNA demethylation,and auxin accumulation[J]. Plant Cell Rep, 2022, 41(9):1875-1893.DOI: 10.1007/s00299-022-02898-3. |
[30] | CHEN X H, XU X P, SHEN X, et al. Genome-wide investigation of DNA methylation dynamics reveals a critical role of DNA demethylation during the early somatic embryogenesis of Dimocarpus longan Lour[J]. Tree Physiol, 2020, 40(12):1807-1826.DOI: 10.1093/treephys/tpaa097. |
[31] | GUO H H, FAN Y J, GUO H X, et al. Somatic embryogenesis critical initiation stage-specificm CHH hypomethylation reveals epigenetic basis underlying embryogenic redifferentiation in cotton[J]. Plant Biotechnol J, 2020, 18(8):1648-1650.DOI: 10.1111/pbi.13336. |
[32] | GARCIA C, DE FURTADO ALMEIDA A A, COSTA M, et al. Single-base resolution methylomes of somatic embryogenesis in Theobroma cacao L.reveal epigenome modifications associated with somatic embryo abnormalities[J]. Sci Rep, 2022, 12(1):15097.DOI: 10.1038/s41598-022-18035-9. |
[33] | OSORIO-MONTALVO P, DE-LA-PEÑA C, OROPEZA C, et al. A peak in global DNA methylation is a key step to initiate the somatic embryogenesis of coconut palm (Cocos nucifera L)[J]. Plant Cell Rep, 2020, 39(10):1345-1357.DOI: 10.1007/s00299-020-02568-2. |
[34] | DU X, YANG Z L, XIE G H, et al. Molecular basis of the plant ROS1-mediated active DNA demethylation[J]. Nat Plants, 2023, 9(2):271-279.DOI: 10.1038/s41477-022-01322-8. |
[35] | CHEN R Z, CHEN X H, HUO W, et al. Transcriptome analysis of azacitidine (5-AzaC)-treatment affecting the development of early somatic embryogenesis in Longan[J]. J Hortic Sci Biotechnol, 2021, 96(3):311-323.DOI: 10.1080/14620316.2020.1847695. |
[36] | SANTOS D, FEVEREIRO P. Loss of DNA methylation affects somatic embryogenesis in Medicago truncatula[J]. Plant Cell Tissue Organ Cult, 2002, 70(2):155-161.DOI: 10.1023/A:1016369921067. |
[37] | WÓJCIKOWSKA B, GAJ M D. Expression profiling of auxin response factor genes during somatic embryogenesis induction in Arabidopsis[J]. Plant Cell Rep, 2017, 36(6):843-858.DOI: 10.1007/s00299-017-2114-3. |
[38] | GRZYBKOWSKA D, MORONCZYK J, WÓJCIKOWSKA B, et al. Azacitidine (5-AzaC)-treatment and mutations in DNA methylase genes affect embryogenic response and expression of the genes that are involved in somatic embryogenesis in Arabidopsis[J]. Plant Growth Regul, 2018, 85(2):243-256.DOI: 10.1007/s10725-018-0389-1. |
[39] | GAO Y, CUI Y, ZHAO R R, et al. Cryo-treatment enhances the embryogenicity of mature somatic embryos via the lncRNA-miRNA-mRNA network in white spruce[J]. Int J Mol Sci, 2022, 23(3):1111.DOI: 10.3390/ijms23031111. |
[40] | CASTANDER-OLARIETA A, PEREIRA C, SALES E, et al. Induction of Radiata pine somatic embryogenesis at high temperatures provokes a long-term decrease in DNA methylation/hydroxymethylation and differential expression of stress-related genes[J]. Plants, 2020, 9(12):1762.DOI: 10.3390/plants9121762. |
[41] | PACHOTA K A, ORŁOWSKA R. Effect of copper and silver ions on sequence and DNA methylation changes in triticale regenerants gained via somatic embryogenesis[J]. J Appl Genet, 2022, 63(4):663-675.DOI: 10.1007/s13353-022-00717-9. |
[42] | SHEMER O, LANDAU U, CANDELA H, et al. Competency for shoot regeneration from Arabidopsis root explants is regulated by DNA methylation[J]. Plant Sci, 2015, 238:251-261.DOI: 10.1016/j.plantsci.2015.06.015. |
[43] | SHIBUKAWA T, YAZAWA K, KIKUCHI A, et al. Possible involvement of DNA methylation on expression regulation of carrot LEC1 gene in its 5'-upstream region[J]. Gene, 2009, 437(1/2):22-31.DOI: 10.1016/j.gene.2009.02.011. |
[44] | DAI X H, WANG J, SONG Y G, et al. Cytosine methylation of the FWA promoter promotes direct in vitro shoot regeneration in Arabidopsis thaliana[J]. J Integr Plant Biol, 2021, 63(8):1491-1504.DOI: 10.1111/jipb.13156. |
[45] | LIU X, ZHU K,& XIAO J. Recent advances in understanding of the epigenetic regulation of plant regeneration[J]. aBioTech, 2023, 4(1): 31-46.DOI:10.1007/s42994-022-00093-2. |
[46] | SHIM S, LEE H G, SEO P J. MET1-dependent DNA methylation represses light signaling and influences plant regeneration in Arabidopsis[J]. Mol Cells, 2021, 44(10):746-757.DOI: 10.14348/molcells.2021.0160. |
[47] | XU J, WANG X, CAO H, et al. Dynamic changes in methylome and transcriptome patterns in response to methyltransferase inhibitor 5-azacytidine treatment in citrus[J]. DNA Res, 2017, 24:509-522.DOI:10.1093/dnares/dsx021. |
[48] | KARIM R, TAN Y S, SINGH P, et al. Expression and DNA methylation of SERK,BBM,LEC2 and WUS genes in in vitro cultures of Boesenbergia rotunda (L.) Mansf[J]. Physiol Mol Biol Plants, 2018, 24(5):741-751.DOI: 10.1007/s12298-018-0566-8. |
[49] | VININ K, POMRANING K R, WILHELM L J, et al. Methylome reorganization during in vitro dedifferentiation and regeneration of Populus trichocarpa[J]. BMC plant biology, 2013, 13:1-15.DOI:10.1186/1471-2229-13-92. |
[50] | CAO Q, FENG Y X, DAI X W, et al. Dynamic changes of DNA methylation during wild strawberry (Fragaria nilgerrensis) tissue culture[J]. Front Plant Sci, 2021, 12:765383.DOI: 10.3389/fpls.2021.765383. |
[51] | LI J Y, WANG M J, LI Y J, et al. Multi-omics analyses reveal epigenomics basis for cotton somatic embryogenesis through successive regeneration acclimation process[J]. Plant Biotechnol J, 2019, 17(2):435-450.DOI: 10.1111/pbi.12988. |
[52] | LAW J A, JACOBSEN S E. Establishing,maintaining and modifying DNA methylation patterns in plants and animals[J]. Nat Rev Genet, 2010, 11(3):204-220.DOI: 10.1038/nrg2719. |
[53] | LI W, LIU H, CHENG Z J, et al. DNA methylation and histone modifications regulate de novo shoot regeneration in Arabidopsis by modulating WUSCHEL expression and auxin signaling[J]. PLoS Genet, 2011, 7(8):e1002243.DOI: 10.1371/journal.pgen.1002243. |
[54] | LIU H, ZHANG H, DONG Y X, et al. DNA Methyltransferase 1-mediated shoot regeneration is regulated by cytokinin-induced cell cycle in Arabidopsis[J]. New Phytol, 2018, 217(1):219-232.DOI: 10.1111/nph.14814. |
[55] | YAARI R, KATZ A, DOMB K, et al. RdDM-independent de novo and heterochromatin DNA methylation by plant CMT and DNMT3 orthologs[J]. Nat Commun, 2019, 10(1):1613.DOI: 10.1038/s41467-019-09496-0. |
[56] | GAO Y, CHEN X Y, CUI Y, et al. Effects of medium supplements on somatic embryo maturation and DNA methylation in Pseudotsuga gaussenii Flous,a species under protection[J]. Forests, 2022, 13(2):288.DOI: 10.3390/f13020288. |
[57] | ERDMANN R M, PICARD C L. RNA-directed DNA methylation[J]. PLoS Genet, 2020, 16(10):e1009034.DOI: 10.1371/journal.pgen.1009034. |
[58] | JI L X, MATHIONI S M, JOHNSON S, et al. Genome-wide reinforcement of DNA methylation occurs during somatic embryogenesis in soybean[J]. Plant Cell, 2019, 31(10):2315-2331.DOI: 10.1105/tpc.19.00255. |
[59] | GIRI C C, SHYAMKUMAR B, ANJANEYULU C. Progress in tissue culture, genetic transformation and applications of biotechnology to trees: an overview[J]. Trees, 2004, 18:115-135. DOI 10.1007/s00468-003-0287-6. |
[60] | BARGHCHI M, ALDERSON P G. The control of shoot tip necrosis in Pistacia vera L. in vitro[J]. Plant growth regulation, 1996, 20:31-35. |
[61] | GUTIERREZ-ARCELU, MARI, LAPPALATNEN T, et al. Passive and active DNA methylation and the interplay with genetic variation in gene regulation[J]. elife, 2013, 2: e00523.DOI:10.7554/eLife.00523.001. |
[1] | 黄碧芸, 卓仁英, 乔桂荣. 毛竹不同类型愈伤组织比较分析[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 141-149. |
[2] | 王纪, 方升佐. 不同抗褐化剂对青钱柳愈伤组织酶活性和生长的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 167-174. |
[3] | 程方, 孙婷玉, 叶建仁. 抗松针褐斑病湿地松未成熟合子胚胚性愈伤组织的诱导[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 175-182. |
[4] | 马娟娟, 吴琴霞, 陈颖, 王瑞敏, 袁斌龄, 胡宇辰, 曹福亮. 银杏胚乳不同发育时期生理代谢变化与其胚性感受态的相关性研究[J]. 南京林业大学学报(自然科学版), 2022, 46(4): 68-76. |
[5] | 高芳, 陈士刚, 秦彩云, 才巨锋, 王聪慧, 董环宇, 陶晶. 红皮云杉体胚发生体系优化和超低温保存技术研究[J]. 南京林业大学学报(自然科学版), 2021, 45(3): 100-108. |
[6] | 高燕, 莫建彬, 付艳茹, 奉树成. 铁线莲‘朱卡’组织培养技术及再生体系的建立[J]. 南京林业大学学报(自然科学版), 2021, 45(3): 109-116. |
[7] | 佘露露, 王伟娟, 宋静静, 卢存福, 陈玉珍. 低温驯化对西藏绵头雪莲愈伤组织抗冻性及抗氧化能力的影响[J]. 南京林业大学学报(自然科学版), 2019, 43(5): 181-186. |
[8] | 孙永莲,戴晓港,李小平,陈赢男. 簸箕柳组培再生体系的建立[J]. 南京林业大学学报(自然科学版), 2019, 43(02): 31-37. |
[9] | 兖攀,彭方仁,张瑞,曹明闽,翟敏,刘壮壮. 美国山核桃嫁接愈合过程的组织细胞学观察[J]. 南京林业大学学报(自然科学版), 2018, 42(02): 202-206. |
[10] | 高芳,沈海龙,刘春苹,王祎,张鹏,杨玲. 红松成熟胚愈伤组织诱导外植体选择及培养条件优化[J]. 南京林业大学学报(自然科学版), 2017, 41(03): 43-50. |
[11] | 许建秀,吴静,叶建仁,吴小芹. 抗松材线虫病赤松胚性愈伤组织的维持与稳定增殖[J]. 南京林业大学学报(自然科学版), 2017, 41(01): 49-54. |
[12] | 董京,施季森,徐进. 柳杉种子合子胚的愈伤组织诱导及植株再生[J]. 南京林业大学学报(自然科学版), 2016, 40(06): 181-186. |
[13] | 韩珊,朱天辉,谯天敏,李姝江,汪菊,张博阳. 板栗愈伤组织对栗疫菌Cp-毒素的抗性响应[J]. 南京林业大学学报(自然科学版), 2015, 39(05): 1-6. |
[14] | 吴静,朱丽华,许建秀,吴小芹,叶建仁. 抗松材线虫病赤松胚性愈伤组织的诱导及增殖[J]. 南京林业大学学报(自然科学版), 2015, 39(01): 17-21. |
[15] | 阮氏钏,方升佐,尚旭岚,杨万霞. 青钱柳愈伤组织不定芽诱导技术[J]. 南京林业大学学报(自然科学版), 2014, 38(02): 52-56. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||