PagAPY1基因调控银腺杨耐旱性的作用机制研究

王质璞, 李卓蓉, 罗志斌, 邓澍荣

南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (6) : 105-112.

PDF(19928 KB)
PDF(19928 KB)
南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (6) : 105-112. DOI: 10.12302/j.issn.1000-2006.202309014
研究论文

PagAPY1基因调控银腺杨耐旱性的作用机制研究

作者信息 +

Mechanisms of PagAPY1 in regulating drought tolerance in Populus alba × P. glandulosa

Author information +
文章历史 +

摘要

【目的】Apyrase是水解细胞内/外核苷磷酸的关键酶,在调控植物生长发育和逆境响应中起重要作用。本研究鉴定银腺杨(Populus alba × P. glandulosa)中PagAPY1的分子功能,揭示其促进耐旱性的作用机制。【方法】利用生物信息学方法鉴定银腺杨PagAPY1基因,构建PagAPY1-YFP融合蛋白,观察PagAPY1的亚细胞定位,利用农杆菌介导的转基因技术获得过表达PagAPY1转基因银腺杨,利用实时荧光定量PCR(qRT-PCR)检测野生型和转基因杨树中PagAPY1及其他抗逆基因表达,分析干旱胁迫下野生型和转基因杨树生长表型、根系发育和叶片保水性能等生理指标。【结果】PagAPY1具有Apyrase保守结构域,定位于高尔基体中,参与水解NTP/NDP。PagAPY1表达受干旱胁迫诱导。在干旱胁迫下,PagAPY1过表达杨树的存活率、根系生物量和不定根生长等相比野生型显著提高;同时,过表达杨树的气孔开度相比野生型降低。与野生型相比,过表达株系对ABA诱导的气孔关闭更为敏感。此外,过表达株系中活性氧信号和抗氧化酶相关基因在干旱胁迫下显著上调表达。【结论】干旱胁迫下,PagAPY1通过维持蛋白糖基化和胞外ATP(eATP)稳态平衡,促进生长素极性运输,提高根系生长,促进气孔闭合,减少叶片水分散失,同时激活活性氧信号,增加抗氧化酶系统活性,从而提高了杨树抗旱性。

Abstract

【Objective】 Apyrases are key enzymes that hydrolyze nucleoside di- and triphosphates inside or outside the cell, which play crucial roles in regulating plant growth and stress responses. This study identified the molecular function of Apyrase gene PagAPY1 in Populus alba × P. glandulosa and elucidated the regulatory mechanisms of PagAPY1 in enhancing drought tolerance in poplars. 【Method】 Using bioinformatics approaches, the PagAPY1 gene was identified in genome of P. alba × P. glandulosa. A PagAPY1-YFP fusion protein was constructed for subcellular localization analysis. PagAPY1-overexpressing transgenic poplars were obtained through agrobacterium-mediated transformation. qRT-PCR was used to detect the expression of PagAPY1 and other stress-related genes in both wild type and transgenic poplars. The growth phenotype, root development, and leaf water retention were analyzed under drought stress. Leave stomatal aperture was measured in both WT and transgenic poplars under drought or ABA treatment. 【Result】 The protein coded by PagAPY1 possessed conserved ACR domains and amino acid residues critical for enzyme catalytic activity. PagAPY1 was localized to the Golgi apparatus, where it could participate in the hydrolysis of NTP/NDP. The expression of PagAPY1 was induced by drought. Eight PagAPY1-overexpressing transgenic poplars were identified and three OE lines with the highest PagAPY1 expression levels were selected for further experiments. Under drought stress, the PagAPY1-OE transgenic lines showed improved survival rates, plant height, root length, root biomass compared with the wild-type poplars. Under osmotic stress, the transgenic plants exhibited greater adventitious root growth compared with the wild type. Meanwhile, the stomatal aperture was more significantly decreased in the transgenic lines during drought condition. In contrast to wild-type, the OE lines exhibited greater sensitivity to ABA-induced stomatal closure. The expression of genes involved in ROS signaling and genes coding antioxidant enzymes was significantly upregulated in the PagAPY1-overexpressing lines under drought condition. 【Conclusion】 Under drought stress, PagAPY1 facilitates auxin polar transport by maintaining protein glycosylation and eATP homeostasis, thereby enhances root growth in the overexpression poplars. Meanwhile, through regulating eATP levels in leaves, PagAPY1 promotes stomatal closure to reduce leaf water loss under drought stress. PagAPY1-overexpressing also increases the expression levels of genes that are involved in ROS signaling and antioxidant enzyme system, thereby enhancing drought resistance in poplars.

关键词

银腺杨 / Apyrase酶 / 耐旱性 / 基因功能 / APY基因

Key words

Populus alba × P. glandulosa / Apyrase / drought tolerance / gene function / APY gene

引用本文

导出引用
王质璞, 李卓蓉, 罗志斌, . PagAPY1基因调控银腺杨耐旱性的作用机制研究[J]. 南京林业大学学报(自然科学版). 2023, 47(6): 105-112 https://doi.org/10.12302/j.issn.1000-2006.202309014
WANG Zhipu, LI Zhuorong, LUO Zhibin, et al. Mechanisms of PagAPY1 in regulating drought tolerance in Populus alba × P. glandulosa[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2023, 47(6): 105-112 https://doi.org/10.12302/j.issn.1000-2006.202309014
中图分类号: S718;Q78   

参考文献

[1]
山仑, 邓西平, 康绍忠. 我国半干旱地区农业用水现状及发展方向[J]. 水利学报, 2002, 33(9):27-31.
SHAN L, DENG X P, KANG S Z. Current situation and perspective of agricultural water used in semiarid area of China[J]. J Hydraul Eng, 2002, 33(9):27-31.DOI: 10.3321/j.issn:0559-9350.2002.09.005.
[2]
黎磊, 陈家宽. 气候变化对野生植物的影响及保护对策[J]. 生物多样性, 2014, 22(5):549-563.
LI L, CHEN J K. Influence of climate change on wild plants and the conservation strategies[J]. Biodivers Sci, 2014, 22(5):549-563.DOI: 10.3724/SP.J.1003.2014.14124.
[3]
GUPTA A, RICO-MEDINA A, CAÑO-DELGADO A I. The physiology of plant responses to drought[J]. Science, 2020, 368(6488):266-269.DOI: 10.1126/science.aaz7614.
[4]
WAADT R, SELLER C A, HSU P K, et al. Plant hormone regulation of abiotic stress responses[J]. Nat Rev Mol Cell Biol, 2022, 23(10):680-694.DOI: 10.1038/s41580-022-00479-6.
[5]
毕毓芳, 诸葛强. 林木非生物胁迫抗性基因工程研究进展[J]. 世界林业研究, 2008, 21(5):30-36.
BI Y F, ZHUGE Q. Progress in genetic engineering of forest trees under abiotic stresses[J]. World For Res, 2008, 21(5):30-36.DOI: 10.13348/j.cnki.sjlyyj.2008.05.006.
[6]
SUMMERS E L, CUMMING M H, OULAVALLICKAL T, et al. Structures and kinetics for plant nucleoside triphosphate diphosphohydrolases support a domain motion catalytic mechanism[J]. Protein Sci, 2017, 26(8):1627-1638.DOI: 10.1002/pro.3199.
[7]
OKUHATA R, TAKISHIMA T, NISHIMURA N, et al. Purification and biochemical characterization of a novel ecto-apyrase,MP67,from Mimosa pudica[J]. Plant Physiol, 2011, 157(1):464-475.DOI: 10.1104/pp.111.180414.
[8]
VEERAPPA R, SLOCUM R D, SIEGENTHALER A, et al. Ectopic expression of a pea apyrase enhances root system architecture and drought survival in Arabidopsis and soybean[J]. Plant Cell Environ, 2019, 42(1):337-353.DOI: 10.1111/pce.13425.
[9]
WU J, STEINEBRUNNER I, SUN Y, et al. Apyrases (nucleoside triphosphate-diphosphohydrolases) play a key role in growth control in Arabidopsis[J]. Plant Physiol, 2007, 144(2):961-975.DOI: 10.1104/pp.107.097568.
[10]
CLARK G, FRALEY D, STEINEBRUNNER I, et al. Extracellular nucleotides and apyrases regulate stomatal aperture in Arabidopsis[J]. Plant Physiol, 2011, 156(4):1740-1753.DOI: 10.1104/pp.111.174466.
[11]
DENG S R, SUN J, ZHAO R, et al. Populus euphratica APYRASE2 enhances cold tolerance by modulating vesicular trafficking and extracellular ATP in Arabidopsis plants[J]. Plant Physiol, 2015, 169(1):530-548.DOI: 10.1104/pp.15.00581.
[12]
LIM M H, WU J, YAO J C, et al. Apyrase suppression raises extracellular ATP levels and induces gene expression and cell wall changes characteristic of stress responses[J]. Plant Physiol, 2014, 164(4):2054-2067.DOI: 10.1104/pp.113.233429.
[13]
CHOI J, TANAKA K, CAO Y R, et al. Identification of a plant receptor for extracellular ATP[J]. Science, 2014, 343(6168):290-294.DOI: 10.1126/science.343.6168.290.
[14]
WU Y S, YIN H M, LIU X Y, et al. P2K1 receptor,heterotrimeric Gα protein and CNGC2/4 are involved in extracellular ATP-promoted ion influx in the pollen of Arabidopsis thaliana[J]. Plants, 2021, 10(8):1743.DOI: 10.3390/plants10081743.
[15]
MYERS R J, FICHMAN Y, STACEY G, et al. Extracellular ATP plays an important role in systemic wound response activation[J]. Plant Physiol, 2022, 189(3):1314-1325.DOI: 10.1093/plphys/kiac148.
[16]
CLARK G, ROUX S J. Apyrases, extracellular ATP and the regulation of growth[J]. Curr Opin Plant Biol, 2011, 14(6):700-706.DOI: 10.1016/j.pbi.2011.07.013.
[17]
SUN J, ZHANG C L, DENG S R, et al. An ATP signalling pathway in plant cells:extracellular ATP triggers programmed cell death in Populus euphratica[J]. Plant Cell Environ, 2012, 35(5):893-916.DOI: 10.1111/j.1365-3040.2011.02461.x.
[18]
HAO L H, WANG W X, CHEN C, et al. Extracellular ATP promotes stomatal opening of Arabidopsis thaliana through heterotrimeric G protein α subunit and reactive oxygen species[J]. Mol Plant, 2012, 5(4):852-864.DOI: 10.1093/mp/ssr095.
[19]
SCHILLER M, MASSALSKI C, KURTH T, et al. The Arabidopsis apyrase AtAPY1 is localized in the Golgi instead of the extracellular space[J]. BMC Plant Biol, 2012, 12:123.DOI: 10.1186/1471-2229-12-123.
[20]
CHIU T Y, CHRISTIANSEN K, MORENO I, et al. AtAPY1 and AtAPY2 function as Golgi-localized nucleoside diphosphatases in Arabidopsis thaliana[J]. Plant Cell Physiol, 2012, 53(11):1913-1925.DOI: 10.1093/pcp/pcs131.
[21]
MASSALSKI C, BLOCH J, ZEBISCH M, et al. The biochemical properties of the Arabidopsis ecto-nucleoside triphosphate diphosphohydrolase AtAPY1 contradict a direct role in purinergic signaling[J]. PLoS One, 2015, 10(3):e0115832.DOI: 10.1371/journal.pone.0115832.
[22]
BERNINSONE P, MIRET J J, HIRSCHBERG C B. The Golgi guanosine diphosphatase is required for transport of GDP-mannose into the lumen of Saccharomyces cerevisiae Golgi vesicles[J]. J Biol Chem, 1994, 269(1):207-211.
[23]
CLARK G, BROWN K A, TRIPATHY M K, et al. Recent advances clarifying the structure and function of plant apyrases (nucleoside triphosphate diphosphohydrolases)[J]. Int J Mol Sci, 2021, 22(6):3283.DOI: 10.3390/ijms22063283.
[24]
BRANDAN E, FLEISCHER B. Orientation and role of nucleosidediphosphatase and 5'-nucleotidase in Golgi vesicles from rat liver[J]. Biochemistry, 1982, 21(19):4640-4645.DOI: 10.1021/bi00262a019.
[25]
孙晓莎, 王遂, 赵曦阳, 等. 84K杨4CL3/4CL5基因克隆及生物信息学分析[J]. 植物研究, 2019, 39(4):547-556.
SUN X S, WANG S, ZHAO X Y, et al. Cloning and bioinformatics analysis 4CL3/4CL5 gene of Populus alba×P.glandulosa[J]. Bull Bot Res, 2019, 39(4):547-556.DOI: 10.7525/j.issn.1673-5102.2019.04.009.
[26]
YU W J, DENG S R, CHEN X, et al. PcNRAMP1 enhances cadmium uptake and accumulation in Populus × canescens[J]. Int J Mol Sci, 2022, 23(14):7593.DOI: 10.3390/ijms23147593.
[27]
WANG L Q, WEN S S, WANG R, et al. PagWOX11/12a activates PagCYP736A12 gene that facilitates salt tolerance in poplar[J]. Plant Biotechnol J, 2021, 19(11):2249-2260.DOI: 10.1111/pbi.13653.
[28]
LIU X, WU J, CLARK G, et al. Role for apyrases in polar auxin transport in Arabidopsis[J]. Plant Physiol, 2012, 160(4):1985-1995.DOI: 10.1104/pp.112.202887.
[29]
CHEN D Q, CAO Y R, LI H, et al. Extracellular ATP elicits DORN1-mediated RBOHD phosphorylation to regulate stomatal aperture[J]. Nat Commun, 2017, 8(1):2265.DOI: 10.1038/s41467-017-02340-3.
[30]
LI X H, ZHANG H J, TIAN L M, et al. Tomato SlRbohB,a member of the NADPH oxidase family,is required for disease resistance against Botrytis cinerea and tolerance to drought stress[J]. Front Plant Sci, 2015, 6:463.DOI: 10.3389/fpls.2015.00463.
[31]
KIM D, CHEN D Q, AHSAN N, et al. The raf-like mapkkk integrin-linked kinase 5 regulates purinergic receptor-mediated innate immunity in Arabidopsis[J]. Plant Cell, 2023, 35(5):1572-1592.DOI: 10.1093/plcell/koad029.
[32]
WANG L, CHEN L, LI R, et al. Reduced drought tolerance by CRISPR/Cas9-mediated SlMAPK3 mutagenesis in tomato plants[J]. J Agric Food Chem, 2017, 65(39):8674-8682.DOI: 10.1021/acs.jafc.7b02745.

脚注

基金

国家自然科学基金青年科学基金项目(31901287)

编辑: 吴祝华
PDF(19928 KB)

Accesses

Citation

Detail

段落导航
相关文章

/