人工林胡桃楸幼龄期与成熟期界定方法的比较

佟达,张燕,宋魁彦

南京林业大学学报(自然科学版) ›› 2013, Vol. 37 ›› Issue (03) : 103-109.

PDF(879752 KB)
PDF(879752 KB)
南京林业大学学报(自然科学版) ›› 2013, Vol. 37 ›› Issue (03) : 103-109. DOI: 10.3969/j.issn.1000-2006.2013.03.019
研究论文

人工林胡桃楸幼龄期与成熟期界定方法的比较

  • 佟 达,张 燕,宋魁彦*
作者信息 +

Comparative to determine the demarcation between juvenile and mature period wood of Juglans mandshurica Maxim. Plantation

  • TONG Da, ZHANG Yan,SONG Kuiyan*
Author information +
文章历史 +

摘要

为了确定人工林胡桃楸的成熟期,以其年轮间的径向解剖性质为研究对象,采用有序聚类最优分割法、主成分聚类法、BP神经网络和支持向量机(SVM)4种分类方法分别进行界定。研究结果表明:可以采用主成分聚类、BP神经网络与支持向量机分类方法界定人工林胡桃楸的生长期,其分类结果与采用有序聚类最优分割法界定的年限差值为0~3 a; 人工林胡桃楸的过渡期与成熟期可以进行有效界定,但对幼龄期与过渡期的划分结果很难确定为一个精准的数值。通过比较分析,支持向量机为界定人工林胡桃楸幼龄期与成熟期的最佳方法。

Abstract

Juglans mandshurica Maxim. plantation radical anatomical characteristics between rings were analyzed in order to confirm the mature period. Sequential clustering optimal segmentation, principal component clustering, BP neural network and support vector machine(SVM)methods were respectively used for the demarcation. Results indicated that principal component clustering, BP neural network and SVM methods could determine the growth period of Juglans mandshurica Maxim. plantation, which had 0 to 3 years distinction to the sequential clustering optimal segmentation method. Mature period and transitional period of Juglans mandshurica Maxim. plantation could be determined efficiently, while juvenile period and transitional which could not demarcated on a specific year. Through the comparative analysis of these above methods, SVM was a preferred method for juvenile and mature period demarcation of Juglans mandshurica Maxim. plantation.

引用本文

导出引用
佟达,张燕,宋魁彦. 人工林胡桃楸幼龄期与成熟期界定方法的比较[J]. 南京林业大学学报(自然科学版). 2013, 37(03): 103-109 https://doi.org/10.3969/j.issn.1000-2006.2013.03.019
TONG Da, ZHANG Yan,SONG Kuiyan. Comparative to determine the demarcation between juvenile and mature period wood of Juglans mandshurica Maxim. Plantation[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2013, 37(03): 103-109 https://doi.org/10.3969/j.issn.1000-2006.2013.03.019
中图分类号: S791.27   

参考文献

[1] 李坚, 郭明辉, 赵西平. 木材品质与营林环境[M]. 北京:科学出版社, 2011.
[2] Joel W Evans, John F Senft, David W Green. Juvenile wood effect in red alder:Analysis of physical and mechanical data to delineate juvenile and mature wood zones [J]. Forest Products Journal, 2000, 50(7/8):75-87.
[3] Jérome Alteyrac, Alain Cloutier, Zhang S Y. Characterization of juvenile wood to mature wood transition age in black spruce(Picea mariana(Mill.)B.S.P.)at different stand densities and sampling heights [J]. Wood Science and Technology, 2006,40(2):124-138.
[4] Rüdiger Mutz, Edith Guilley, Udo H Sauter, et al. Modeling juvenile-mature wood transition in Scots pine(Pinus sylvestris L.)using nonlinear mixed-effects models [J]. Annals of Forest Science, 2004,61(8):831-841.
[5] Ferreira A L, Severo E T D, Calonego F W. Determination of fiber length and juvenile and mature wood zones from Hevea brasiliensis trees grown in Brazil [J]. Eur J Wood Prod, 2011,69(4):659-662.
[6] Ryouta Tsuchiya. Relationship between the radial variation of ray characteristics and the stages of radial stem increment in Zelkova serrata [J]. The Japan Wood Research Society, 2010,56(6):495-501.
[7] Jianjun Zhu, Naoki Tadooka, Katsuhiko Takata, et al. Growth and wood quality of sugi (Cryptomeria japonica) planted in Akita prefecture(II)[J]. Juvenile/mature Wood Determination of Aged Trees, 2005,51(2):95-101.
[8] Chih-Ming Chiu, Song-Yung Wang, Cheng-Jung Lin, et al. Application of the fractometer for crushing strength:juvenile-mature wood demarcation in Taiwania(Taiwania cryptomerioids)[J]. The Japan Wood Research Society, 2006(52):9-14.
[9] Levente Csoka, Jianjun Zhu, Katsuhiko Takata. Application of the fourier analysis to determine the demarcation between juvenile and mature wood [J]. The Japan Wood Research Society, 2005(51):309-311.
[10] 王金满, 刘一星, 李坚. 人工林长白落叶松木材材质早期预测模式(Ⅰ)——材性变异、幼龄期与成熟期的界定[J]. 东北林业大学学报, 1996, 24(5):65-71. Wang J M, Liu Y X, Li J. Early prediction model on wood properties of Larix olgensis A. plantation(Ⅰ)——Variation on wood properties, demarcation of juvenile and mature period[J]. Journal of Northeast Forestry University, 1996, 24(5):65-71.
[11] 陈广胜. 基于神经网络的人工林落叶松木材材质预测研究[D]. 哈尔滨:东北林业大学, 2006.
[12] 钟伟华, 何昭珩, 周达, 等. 主成分聚类在火炬松种子园疏伐中的运用[J]. 福建林学院学报, 1999, 19(1):33-36. Zhong W H, He S H, Zhou D, et al. The application of principal component analysis on thinning of loblolly pine seed orchard[J]. Journal of Fujian College of Forestry, 1999, 19(1):33-36.
[13] 陈建宏, 蒋权, 郑海力, 等. 基于主成分聚类分析的采矿方法优选[J]. 科技导报, 2011, 29(27):36-41. Chen J H, Jiang Q, Zheng H L, et al. Optimization of mining methods based on principal composition cluster analysis[J]. Science & Technology Review, 2011,29(27):36-41.
[14] Gaitani N. Lehmann C, Santamouris M. et al. Using principal component and cluster analysis in the heating evaluation of the school building sector [J]. Applied Energy, 2010(87):2079-2086.
[15] Gaudreault N, Mezghani N, Fuentes A, et al. Principal component clustering of frontal plane knee kinematics [J]. Osteoarthritis and Cartilage, 2010,18:S17.
[16] 马逢时, 吴诚欧, 菜霞. 基于MINITAB的现代实用统计[M]. 北京:中国人民大学出版社, 2009.
[17] 费本华, 郭伟, 张赛男, 等. 人工神经网络技术在木材科学中的应用[J]. 木材加工机械, 2009(3):34-37. Fei B H, Guo W, Zhang S N, et al. Artificial neural network technology in the application of wood science[J]. Wood Processing Machinery, 2009(3):34-37.
[18] 韩力群.人工神经网络教程[M]. 北京:北京邮电大学出版社, 2006.
[19] 史峰. 王小川. 郁磊. 等. MATLAB神经网络30个案例分析[M]. 北京:北京航空航天大学出版社, 2010.
[20] Zhu X D, Cao J, Wang F H, et al. Wood defect identification based on artificial neural network [J]. Communications in Computer and Information Science, 2009, 51(4):207-214.
[21] Wang Lihai, Qi Wei, Li L. et al. Pattern recognition and size determination of internal wood defects based on wavelet neural networks [J]. Computer and Electronics in Agriculture, 2009(69):142-148.
[22] Marco Castellani, Hefin Rowlands. Evolutionary artificial neural network design and training for wood veneer classification [J]. Engineering Applications of Artificial Intelligence, 2009(22):732-741.
[23] 江泽慧. 姜笑梅. 木材结构与其品质特性的相关性[M]. 北京:科学出版社, 2008.
[24] Zhang D Y, Sun L P, Cao J. Modeling of temperature-humidity for wood drying based on time-delay neural network [J]. Journal of Forestry Research, 2006, 17(2):141-144.
[25] 陈永义,俞小鼎,高学浩,等. 处理非线性分类和回归问题的一种新方法(Ⅰ)——支持向量机方法简介[J]. 应用气象学报, 2004, 15(3):355-365. Chen Y Y, Yu X D, Gao X H, et al. A new method for non-linear classify and non-linear regression:introduction to support vector machine[J]. Quarterly Journal of Applied Meteorology, 2004,15(3):355-365.
[26] 付阳. 李昆仑. 支持向量机模型参数选择方法综述[J]. 电脑知识与技术, 2010, 6(28):8081-8082. Fu Y, Li K L. A survey of model parameters selection method for support vector machines[J]. Computer Knowledge and Technology, 2010, 6(28):8081-8082.
[27] 杨少春. 木材表面颜色模式识别方法的研究[D]. 哈尔滨:东北林业大学, 2008. Yang S C. Research on pattern recognition of wood surface color[D]. Harbin: Northeast Forestry University, 2008.
[28] 业宁,王厚立,徐兆军,等. 基于支持向量机的木材缺陷识别[J]. 计算机应用与软件, 2006, 23(4):3-5. Ye N, Wang H L, Xu Z J, et al. Recognition of wood defection based on support vector machine[J]. Computer Applications and Software, 2006, 23(4):3-5.
[29] Irene Y H, Gu Henrik Andersson, Raúl Vicen. Automatic classification of wood defects using support vector machines[J]. Lecture Notes in Computer Science, 2009,5337:356-367.
[30] Irene Yu-Hua Gu, Henrik Andersson, Raul Vicen. Wood defect classification based on image analysis and support vector machines[J]. Wood Science and Technology, 2010,44(4):693-704.
[31] 陈立生. 基于支持向量机的木材干燥预测控制技术[D].哈尔滨:东北林业大学, 2011. Chen L S. Timber drying model predictive control technology based on support vector machine[D]. Harbin: Doctor of Northeast Forestry University, 2011.

基金

收稿日期:2012-04-26 修回日期:2012-11-12
基金项目:黑龙江省重点攻关课题(GA09B202-07)
第一作者:佟达,博士生。*通信作者:宋魁彦,教授。E-mail: skuiyan@126.com。
引文格式:佟达,张燕,宋魁彦. 人工林胡桃楸幼龄期与成熟期界定方法的比较[J]. 南京林业大学学报:自然科学版,2013,37(3):103-109.

PDF(879752 KB)

Accesses

Citation

Detail

段落导航
相关文章

/