南京林业大学学报(自然科学版) ›› 2013, Vol. 37 ›› Issue (03): 163-169.doi: 10.3969/j.issn.1000-2006.2013.03.029

• 综合述评 • 上一篇    下一篇

激光雷达技术估测森林生物量的研究现状及展望

曹 林1, 佘光辉1*, 代劲松1,徐建新2   

  1. 1.南京林业大学森林资源与环境学院,江苏 南京 210037;
    2.江苏省测绘工程院,江苏 南京 210013
  • 出版日期:2013-06-18 发布日期:2013-06-18
  • 基金资助:
    收稿日期:2012-12-04 修回日期:2013-03-12
    基金项目:国家自然科学基金项目(30571491)
    第一作者:曹林,讲师,博士生。*通信作者:佘光辉,教授。E-mail: ghshe@njfu.edu.cn。
    引文格式:曹林, 佘光辉, 代劲松,等. 激光雷达技术估测森林生物量的研究现状及展望[J]. 南京林业大学学报:自然科学版,2013,37(3):163-169.

Status and prospects of the LiDAR-based forest biomass estimation

CAO Lin1, SHE Guanghui1*, DAI Jinsong1, XU Jianxin2   

  1. 1.College of Forest Resources and Environment, Nanjing Forestry University, Nanjing 210037, China;
    2.Surveying Engineering Institute of Jiangsu Province, Nanjing 210013, China
  • Online:2013-06-18 Published:2013-06-18

摘要: 随着全球气候变化的日益加剧,森林生物量动态监测及碳储量定量估算日显重要。激光雷达技术可以准确地获取森林的三维结构信息,与蓄积量和生物量等植被生物物理参数有很高的相关性,对于区域生物量连续变化制图和碳储量估算有很好的应用前景。笔者介绍了激光雷达系统的组成和原理,以及不同形式的激光雷达数据生物量提取方法及估算模型,重点分析了单木和林分两个级别的机载小光斑激光雷达系统的森林生物量获取方法。最后,针对当前激光雷达系统获取森林生物量信息的局限性,分析了未来多源遥感数据集成及激光雷达硬件革新技术的发展趋势。

Abstract: Biomass dynamic monitoring and carbon storage quantitative estimation have become more and more important with the global climate change exacerbating. LiDAR(light detection and ranging)can be used as a tool to accurately acquire the three dimensional information of the forests, and usually has a high correlation with the biophysical parameters such as volume and biomass. It shows a great application potential of regional biomass continuous mapping and carbon storage estimation. In this paper, the composition and principle of a typical LiDAR system are introduced, and the various methods of biomass extraction and model fitting from different LiDAR data types are described, especially airborne LiDAR-based biomass estimations for the single tree and stand level. Finally, the limitation of biomass information extraction was discussed, and the future prospects of LiDAR development, such as the integration of data from various remote sensors and the most recent LiDAR hardware innovations, were presented.

中图分类号: