南京林业大学学报(自然科学版) ›› 2013, Vol. 37 ›› Issue (03): 163-169.doi: 10.3969/j.issn.1000-2006.2013.03.029
曹 林1, 佘光辉1*, 代劲松1,徐建新2
出版日期:
2013-06-18
发布日期:
2013-06-18
基金资助:
CAO Lin1, SHE Guanghui1*, DAI Jinsong1, XU Jianxin2
Online:
2013-06-18
Published:
2013-06-18
摘要: 随着全球气候变化的日益加剧,森林生物量动态监测及碳储量定量估算日显重要。激光雷达技术可以准确地获取森林的三维结构信息,与蓄积量和生物量等植被生物物理参数有很高的相关性,对于区域生物量连续变化制图和碳储量估算有很好的应用前景。笔者介绍了激光雷达系统的组成和原理,以及不同形式的激光雷达数据生物量提取方法及估算模型,重点分析了单木和林分两个级别的机载小光斑激光雷达系统的森林生物量获取方法。最后,针对当前激光雷达系统获取森林生物量信息的局限性,分析了未来多源遥感数据集成及激光雷达硬件革新技术的发展趋势。
中图分类号:
曹林,佘光辉,代劲松,等. 激光雷达技术估测森林生物量的研究现状及展望[J]. 南京林业大学学报(自然科学版), 2013, 37(03): 163-169.
CAO Lin, SHE Guanghui, DAI Jinsong, XU Jianxin. Status and prospects of the LiDAR-based forest biomass estimation[J].Journal of Nanjing Forestry University (Natural Science Edition), 2013, 37(03): 163-169.DOI: 10.3969/j.issn.1000-2006.2013.03.029.
[1] Olson J S, Watts J A, Allison L J. Carbon in live vegetation of major world ecosystems[R]. Oak Ridge, Tenn: Oak Ridge National Laboratory, 1983. [2] Kurz W A, Dymond C C, White T M, et al. A model of carbon-dynamics in forestry and land-use change implementing IPCC standards [J]. Ecological Modelling, 2009, 220(4):480-504. [3] Wulder M A, White J C, Stinson G, et al. Implications of differing input data sources and approaches upon forest carbon stock estimation [J]. Environmental Monitoring and Assessment, 2010,166(14):543-561. [4] Gibbs H K, Brown S, Niles J O, et al. Monitoring and estimating tropical forest carbon stocks:making REDD a reality[J]. Environmental Research Letters,2007, 2(4):1-13. [5] Duncanson L, Niemann K, Wulder M. Integration of GLAS and landsat TM data for aboveground biomass estimation[J].Canadian Journal of Remote Sensing,2010,36(2):129-141. [6] 李德仁,王长委,胡月明,等.遥感技术估算森林生物量的研究进展[J].武汉大学学报:信息科学版,2012,37(6):631-635. Li D R, Wang C W, Hu Y M, et al. General review on remote sensing-based biomass estimation[J].Geomatics and Information Science of Wuhan University,2012,37(6):631-635. [7] Thomas Lillesand, Ralph W Kiefer, Jonathan Chipman. Remote Sensing and Image Interpretation[M]. 6th Ed. New York:Wiley Desktop Edition,2007. [8] Lefsky M A, Harding D J, Keller M, et al. Estimates of forest canopy height and aboveground biomass using ICESat[EB/OL].(2012-12-01)Geophysical Research Letters, 2005,32(22). http://onlinelibrary.wiley.com. [9] Nelson R, Valenti M, Short A, et al. A multiple resource inventory of Delaware using airborne laser data[J]. Bio Science, 2003, 53(10):981-992. [10] Blair J B, Rabine D L, Hofton M A. The laser vegetation imaging sensor:a medium-altitude, digitisation-only airborne laser altimeter for mapping vegetation and topography [J].ISPRS Journal of Photogrammetry and Remote Sensing, 1999, 54:115-122. [11] Lim K, Treitz P, Wulder M A, et al. LiDAR remote sensing of forest structure[J]. Progress in Physical Geography, 2003, 27(1):88-106. [12] Cháidez J J N. Allometric equations and expansion factors for tropical try forest trees of eastern Sinaloa, Mexico[J]. Tropical and Subtropical Agroecosystems, 2009, 10(1):45-52. [13] Dubayah R O, Drake J B. LiDAR remote sensing for forestry[J]. Journal of Forestry, 2000, 98(6):44-46. [14] Reutebuch S E, Andersen H E, McGaughey R J. Light detection and ranging(LIDAR):An emerging tool for multiple resource inventory[J]. Journal of Forestry, 2005, 103(6):286-292. [15] Andersen H E, Reutebuch S E, McGaughey R J. A rigorous assessment of tree height measurements obtained using airborne LiDAR and conventional field methods[J].Canadian Journal of Remote Sensing, 2006, 32(5):355-366. [16] Popescu S C, Wynne R H. Seeing the trees in the forest:using lidar and multispectral data fusion with local filtering and variable window size for estimating tree height[J]. Photogrammetric Engineering and Remote Sensing, 2004, 70(5):589-604. [17] Popescu S C, Wynne R H, Nelson R F. Measuring individual tree crown diameter with LiDAR and assessing its influence on estimating forest volume and biomass[J]. Canadian Journal of Remote Sensing, 2003,29(5):564-577. [18] 刘清旺,李增元,陈尔学,等. 利用机载激光雷达提取单株木树高与树冠[J]. 北京林业大学学报,2008,30(6):83-89. Liu Q W, Li Z Y, Chen R X, et al. extracting height and crown of individual tree using airborne LIDAR data[J].Journal of Beijing Forestry University,2008,36(6):83-89. [19] Naesset E, ?kland T. Estimating tree height and tree crown properties using airborne scanning laser in a boreal nature reserve[J]. Remote Sensing of Environment, 2002, 79(1):105-115. [20] 赵峰.机载激光雷达数据和数码相机影像林木参数提取研究[D].北京:中国林业科学研究院,2007. [21] Morsdorf F, Meier E, Koetz B, et al. LIDAR-based geometric reconstruction of boreal type forest stands at single tree level for forest and wildland fire management[J]. Remote Sensing of Environment, 2004, 92(3):353-362. [22] Reitberger J, Schno rr C, Krzystek P, et al. 3D segmentation of single trees exploiting full waveform LIDAR data[J]. ISPRS Journal of Photogrammetry Remote Sensing, 2009, 64(6):561-574. [23] Yu X, Hyyppa J, Kaartinen H, et al, Obtaining plotwise mean height and volume growth in boreal forests using multi-temporal laser surveys and various change detection techniques [J]. International Journal of Remote Sensing, 2008, 29(5):1367-1386. [24] Popescu S C, Wynne R H. Seeing the trees in the forest:using lidar and multispectral data fusion with local filtering and variable window size for estimating tree height [J]. Photogrammetric Engineering and Remote Sensing, 2004, 70:589-604. [25] Coops N C, Hilker T, Wulder M A, et al. Estimating canopy structure of Douglas-fir forest stands from discrete-return LiDAR[J]. Trees:Structure and Function,2007, 21(3):295-310. [26] Reutebuch S E, Andersen H E, McGaughey R J. Light detection and ranging(LIDAR):An emerging tool for multiple resource inventory[J]. Journal of Forestry, 2005, 103:286-292. [27] Nelson R, Krabill W, Tonelli J. Estimating forest biomass and volume using airborne laser data[J]. Remote Sensing of Environment,1988,24(2):247-267. [28] Straub C, Dees M, Weinacker H, et al. Using airborne laser scanner data and CIR orthophotos to estimate the stem volume of forest stands[J]. Photogrammetrie, Fernerkundung, Geoinformation, 2009, 30(3):277-287. [29] Lefsky M A, Cohen W B, Spies T A. An evaluation of alternate remote sensing products for forest inventory, monitoring, and mapping of Douglas-fir forests in western Oregon[J]. Canadian Journal of Forest Research,2001, 31:78-87. [30] Popescu S C. Estimating biomass of individual pine trees using airborne LiDAR[J]. Biomass and Bioenergy,2007,31(9):646-655. [31] Hyyppa J, Hyyppa H, Yu X, et al. Forest Inventory Using Small Footprint Airborne Topographic Laser Ranging and Scanning Principles[M]. Boca Raton:CRC Press, 2008. [32] 刘东起,范文义,李明泽.利用小光斑激光雷达估测林分参数和生物量[J]. 东北林业大学学报, 2012,40(1):39-43. Liu D Q, Fan W Y, Li M Z. Estimation of forest stand parameters and biomass by small-footprint lidar[J]. Journal of Northeast Forestry University, 2012, 40(1):39-43. [33] Tokola T. Development of Forest Resource Assessment Design for Lao PDR[R]. Vientiane: Report to the Ministry of Agriculture and Forestry of Lao PDR, 2009. [34] Naesset E. Estimation of above-and below-ground biomass in boreal forest ecosystems[C]//Thies M, Kock B, Spiecker H, et al. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences. Freiburg, Germany:International Society of Photogrammetry and Remote Sensing,2004. [35] Lefsky M A, Cohen W B, Harding D, et al. Remote sensing of aboveground biomass in three biomes. international archives of the Photogrammetry[J]. Remote Sensing and Spatial Information Sciences,2001, 34:155-160. [36] Colin J, Ferster Nicholas C, Coops, Trofymow J A(Tony). Aboveground large tree mass estimation in a coastal forest in British Columbia using plot-level metrics and individual tree detection from lidar[J]. Canadian Journal of Remote Sensing, 2009, 35(3):270-275. [37] Li Yuzhen, Andersen, Hans-Erik, et al. A comparison of statistical methods for estimating forest biomass from light detection and ranging data[J]. Western Journal of Applied Forestry, 2008,23(4):223-231. [38] 何祺胜,陈尔学,曹春香,等.基于LiDAR数据的森林参数反演方法研究[J].地球科学进展,2009,24(7):748-755. He Q S, Chen R X, Cao C X, et al. A study of forest parameters mapping technique using airborne LiDAR data[J]. Advances in Earth Science,2009,24(7):748-755. [39] Fu T, Pang Y, Huang Q F, et al. Subtropical forest parameters estimation using airborne Lidar data[J]. Journal of Remote Sensing, 2001,15:1092-1098. [40] 庞勇,李增元. 基于机载激光雷达的小兴安岭温带森林组分生物量反演[J]. 植物生态学报,2012, 36(10):1095-1105. Pang Y, Li Z Y. Inversion of biomass components of the temperate forest using airborne lidar technology in Xiaoxing’an Mountains, Northeastern of China[J]. Chinese Journal of Plant Ecology, 2012, 36(10):1095-1105. [41] Nelson R. Model effects on GLAS-based regional estimates of forest biomass and carbon[J]. International Journal of Remote Sensing, 2010, 31(5):1359-1372. [42] Lefsky M, Harding D, Keller M, et al. Estimates of forest canopy height and aboveground biomass using ICESat[J]. Geophysical Research Letters,2005, 32(22).(2012-12-01).http://onlinelibrary.wiley.com. [43] Pang Y, Lefsky M, Sun G, et al. Temperate forest height estimation performance using ICESat GLAS data from different observation periods[R]. Beijing:International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,2008. [44] Sun Guoqing, Guo Z, Ni W, et al. Radar and lidar synergy studies by model simulation[R]. Beijing: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2008. [45] Drake J B, Dubayah R O, Clark D B, et al. Estimation of tropical forest structural characteristics using large-footprint LiDAR[J]. Remote Sensing of Environment,2002,79:305-319. [46] 庞勇,李增元,陈尔学,等.激光雷达技术及其在林业上的应用[J]. 林业科学,2005,41(3):129-136. Pang Y, Li Z Y, Chen E X, et al. Lidar remote sensing technology and its application in forestry[J]. Scientia Silvae Sinicae, 2005, 41(3):129-136. [47] Holmgren J, Persson A, Soerman U. Species identification of individual trees by combining high resolution LiDAR data with multi-spectral images[J]. International Journal of Remote Sensing,2008,29(5):1537-1552. [48] Chen G, Hay G, Modeling large-area canopy surface heights from lidar transects and quickbird data[R]. SilviLaser: College Station, Texas, USA, 2009. [49] 董立新,吴炳方,唐世浩. 激光雷达GLAS 与ETM 联合反演森林地上生物量研究[J]. 北京大学学报:自然科学版, 2011,47(4):703-710. Dong L X, Wu B F, Tang S H. Estimation of forest aboveground biomass by integrating GLAS and ETM Data[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2011, 47(4):703-710. [50] 庞勇,黄克标,李增元.等,基于遥感的湄公河次区域森林地上生物量分析[J].资源科学, 2011,33(10):1863-1869. Pang Y, Huang K B, Li Z Y, et al. Forest aboveground biomass analysis using remote sensing in the greater mekong subregion[J]. Resources Science, 2011, 33(10):1863-1869. [51] Banskota A, Wynne R H, Johnson P, et al. Synergistic use of very high-frequency radar and discrete-LiDAR return for estimating biomass in temperate hardwood and mixed forests[R]. Silvilaser: College Station, Texas, USA, 2009. [52] Hyde P, Nelson R, Kimes D, et al. Exploring LiDAR RaDAR synergy-predicting aboveground biomass in a southwestern ponderosa pine forest using LiDAR, SAR, and InSAR[J]. Remote Sensing of Environment,2007,106(1):28-38. [53] Morsdorf F, Nichol C, Malthus T, et al. Assessing forest structural and physiological information content of multi-spectral waveforms by radiative transfer modelling[J]. Remote Sensing of Environment,2009,113(10): 2152-2163. |
[1] | 赵金满, 韩馨悦, 程瑞明, 张志东. 塞罕坝自然保护区华北落叶松和樟子松人工林健康评价[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 199-206. |
[2] | 罗奕奕, 李凌超, 程宝栋. 经济增长对森林破碎化的影响——以中国京津冀地区为例[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 227-236. |
[3] | 向俊, 严恩萍, 姜镓伟, 宋亚斌, 韦维, 莫登奎. 基于全卷积神经网络和低分辨率标签的森林变化检测研究[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 187-195. |
[4] | 张晓迪, 李明泽, 王斌, 吴泽川, 莫祝坤, 范仲洲. 基于红外序列图像的火线实时提取及蔓延模拟火线优化[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 192-202. |
[5] | 肖箫, 周阳, 王树梅, 郑亚雄, 官凤英. 带状采伐对新生毛竹空间结构及稳定性的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 139-147. |
[6] | 盖军鹏, 陈东升, 贾炜玮, 王政. 基于种源和气候效应的日本落叶松树高生长模型研究[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 51-60. |
[7] | 储安婷, 宁卓, 杨红强. 林业碳汇对人工林最优轮伐期的影响--以杉木和落叶松为例[J]. 南京林业大学学报(自然科学版), 2023, 47(3): 225-233. |
[8] | 朱志洪, 周本智, 王懿祥, 祁军, 李爱博, 黄润霞. 近30年千岛湖流域产水量时空变化及其影响因子分析[J]. 南京林业大学学报(自然科学版), 2023, 47(3): 111-119. |
[9] | 何潇, 雷相东, 段光爽, 丰庆荣, 张逸如, 冯林艳. 气候变化对落叶松人工林生物量生长的影响模拟[J]. 南京林业大学学报(自然科学版), 2023, 47(3): 120-128. |
[10] | 宋磊, 金星姬, PUKKALA Timo, 李凤日. 长白落叶松人工林多目标经营模式研究[J]. 南京林业大学学报(自然科学版), 2023, 47(2): 150-158. |
[11] | 丁相元, 陈尔学, 李增元, 赵磊, 刘清旺, 徐昆鹏. 国家森林资源清查遥感应用主要技术进展[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 1-12. |
[12] | 郭常酉, 郭宏仙, 王宝华. 基于气候因子的杉木单木胸径生长模型构建[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 47-56. |
[13] | 陈幸良. 林下经济学的缘起、发展与展望[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 105-114. |
[14] | 王大卫, 沈文星. 中国主要树种人工乔木林碳储量测算及固碳潜力分析[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 11-19. |
[15] | 雷海清, 孙高球, 郑得利. 温州市森林生态系统碳储量研究[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 20-26. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||