[1] Chen X. Small RNAs and their roles in plant development [J]. Annu Rev Cell Dev Biol, 2009, 25: 21-44. [2] Baulcombe D. RNA silencing in plants [J]. Nature, 2004, 431: 356-363. [3] Chen X M. microRNA biogenesis and function in plants [J]. FEBS Letters, 2005, 579: 5923-5931. [4] Zhang L, Hou D X, Chen X, et al. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA [J]. Cell Research, 2012, 22(1):107-126. [5] Millar A A, Waterhouse P M. Plant and animal microRNAs: similarities and differences [J]. Funct Integr Genomics, 2005, 5(3): 129-135. [6] Rajewsky N. MicroRNA target predictions in animals [J]. Nat Genet, 2006, 38: S8-13. [7] Bonnet E, Wuyts J, Rouze P, et al. Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes [J]. Proc Natl Acad Sci USA, 2004, 101(31): 11511-11516. [8] Sunkar R, Zhu J K. Novel and stress regulated microRNAs and other small RNAs from Arabidopsis [J]. Plant Cell, 2004, 16(8): 2001-2019. [9] Lytle J R,Yario T A,Steitz J A. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5’UTR as in the 3’UTR [J].Proc Natl Acad Sci U S A, 2007, 104(23): 9667-9672. [10] Archak S, Nagaraju J. Computational prediction of rice(Oryza sativa)miRNA targets. genomics [J]. Proteomics & Bioinformatics, 2007, 5(3-4): 196-206. [11] Palatnik J F, Allen X L, Wu C, et al. Weigel: Control of leaf morphogenesis by microRNAs [J]. Nature, 2003, 425: 257-263. [12] Kidner C A. The many roles of small RNAs in leaf development [J]. J Genet Genomics, 2010, 37(1):13-21. [13] Aukerman M J, Sakai H. Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes [J]. Plant Cell, 2003, 15(11):2730-2741. [14] Guo H S, Xie Q, Fei J F, et al. MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development [J]. Plant Cell, 2005, 17(5): 1376-1386. [15] Schwab R, Palatnik J F, Riester M, et al. Specific effects of microRNAs on the plant transcriptome [J]. Developmental Cell, 2005, 8(4): 517-527. [16] Chen H, Li Z, Xiong L. A plant microRNA regulates the adaptation of roots to drought stress [J]. FEBS Lett, 2012, 586: 1742-1747. [17] Subramanian S. MicroRNA regulation of symbiotic nodule development in legumes [J]. MicroRNA in Plant Development and Stress Response, 2012, 15: 177-195. [18] Chellappan P, Vanitharani R, Fauquet C M. MicroRNA-binding viral protein interferes with Arabidopsis development [J]. Proc Natl Acad Sci USA, 2005, 102(29): 10381-10386. [19] Válóczi A, Várallyayé, Kauppinen S, et al. Spatio-temporal accumulation of microRNAs is highly coordinated in developing plant tissue [J]. The Plant Journal, 2006, 47(1): 140-151. [20] Rhoades M W, Reinhart B J, Lim L P, et al. Prediction of plant microRNA targets [J]. Cell, 2002, 110(4): 513-520. [21] Mallory A C, Bartel D P, Bartel B. MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes [J]. The Plant Cell, 2005, 17(5): 1360-1375. [22] Wang J W, Wang L J, Mao Y B, et al. Control of root cap formation by microRNA-targeted auxin response factors in Arabidopsis [J]. Plant Cell, 2005, 17(18): 2204-2216. [23] Li B S, Duan H, Li J G, et al. Global identification of miRNAs and targets in Populus euphratica under salt stress [J]. Plant Mol Biol, 2013, 81(16): 525-539. [24] Liu P P, Montgomery T A, Fahlgren N, et al. Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post-germination stages [J]. The Plant Journal, 2007, 52(1):133-146. [25] Liu X D, Huang J, Wang Y, et al. The role of floral organs in carpels, an Arabidopsis loss-of-function mutation in MicroRNA160a, in organogenesis and the mechanism regulating its expression [J]. The Plant Journal, 2010, 62(3):416-428. [26] Hendelmen A, Buxdorfk, Stav R, et al. Inhibition of lamina oatgrowth following solanam Lycopersioum AUXIN RESPONSE FACTORIO(SIARF10)derepression[J]. Plant Mol Biol, 2012, 78:261-476. [27] Meng Y J, Wu P, Chen M. MicroRNAs in plant roots: current understanding and future perspectives [J]. Non Coding RNAs in Plants RNA Technologies, 2011:269-284. [28] Yin X C, Wang J, Cheng H, et al. Detection and evolutionary analysis of soybean miRNAs responsive to soybean mosaic virus [J]. Planta, 2013, 237(5):1213-1225 [29] Sunkar R, Jagadeeswaran G. In silico identification of conserved microRNAs in large number of diverse plant species [J]. BMC Plant Biology, 2008, 8: 37. [30] Goetz M, Vivian-Smith A, Johnson S D, et al. AUXIN RESPONSE FACTOR8 is a negative regulator of fruit initiation in Arabidopsis[J]. The Plant Cell, 2006, 18(8): 1873-1886. [31] Goetz M, Hooper L C, Johnson S D, et al. Expression of aberrant forms of AUXIN RESPONSE FACTOR8 stimulates parthenocarpy in Arabidopsis and tomato [J]. Plant Physiology, 2007, 145(2): 351-366. [32] Varaud E, Brioudes F, Szecsi J, et al. AUXIN RESPONSE FACTOR8 regulates Arabidopsis petal growth by interacting with the bHLH transcription factor BIGPETALp [J]. The Plant Cell, 2011, 23(3): 973-983. [33] Nagpal P, Ellis C M, Weber H, et al. Auxin response factors ARF6 and ARF8 promote jasmonic acid production and ower maturation [J]. Development, 2005, 132(18): 4107-411. [34] Ru P, Xu L, Ma H, et al. Plant fertility defects induced by the enhanced expression of microRNA167 [J]. Cell Research, 2006, 16(5): 457-465. [35] Wu M F, Tian Q, Reed J W. Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction [J]. Development, 2006, 133(21): 4211-4218. [36] Yang J H, Han S J, Yoon E K, et al. Evidence of an auxin signal pathway, microRNA167-ARF8-GH3, and its response to exogenous auxin in cultured rice cells [J]. Nuclec Acids Res, 2006, 34(6): 1892-1899. [37] Gutierrez L, Bussell J D, Pacurar D I, et al. Phenotypic plasticity of adventitious rooting in Arabidopsis is controlled by complex regulation of auxin response factor transcripts and microRNA abundance [J]. Plant Cell, 2009, 21:3119-3132. [38] Meng Y, Huang F, Shi Q, et al. Genome-wide survey of rice microRNAs and microRNA-target pairs in the root of a novel auxin-resistant mutant [J]. Planta, 2009, 230(5): 883-898. [39] Allen E, Xie Z, Gustafson A M, et al. MicroRNA-directed phasing during trans-acting siRNA biogenesis in plants [J]. Cell, 2005, 121(2): 207-221. [40] Williams L, Carles C C, Osmont K S, et al. A database analysis method identifies an endogenous trans-acting short-interfering RNA that targets the Arabidopsis ARF2, ARF3, and ARF4 genes [J]. Proc Natl Acad Sci USA, 2005,102(27): 9703-9708. [41] Garcia D, Collier S A, Byrne M E, et al. Specification of leaf polarity in Arabidopsis via the trans-acting siRNA pathway [J]. Curr Biol. 2006,16(9): 933-938. [42] Cho S H, Coruh C, Axtell M J. miR156 and miR390 regulate tasiRNA accumulation and developmental timing in Physcomitrella patens [J]. The plant cell, 2012, 24(12): 4837-4849. [43] Marin E, Jouannet V, Herz A, et al. miR390, Arabidopsis TAS3 tasiRNAs, and their AUXIN RESPONSE FACTOR targets define an auto-regulatory network quantitatively regulating lateral root growth[J]. Plant Cell, 2010, 22(4): 1104-1117. [44] Yoon E K, Yang J H, Lim J, et al. Auxin regulation of the microRNA390-dependent trans-acting small interfering RNA pathway in Arabidopsis lateral root development[J]. Nucleic Acids Res, 2010, 38(4): 1382-1391. [45] Wang J, Gao X, Li L, et al. Overexpression of Osta-siR2141 caused abnormal polarity establishment and retarded growth in rice [J]. J Exp Bot, 2010, 61(6): 1885-1895. [46] Kinoshita N, Wang H, Kasahara H, et al. IAA-Ala resistant3, an evolutionarily conserved target of miR167, mediates Arabidopsis root architecture changes during high osmotic stress [J]. Plant Cell, 2012, 24(9): 3590-3602. |