[1] Pashin A J. Textbook of Wood Technology [M]. 4th Edition.New York: Mcgraw-Hill Company, 1980. [2] Beets P N, Gilchrist K, Jeffrey M P. Wood density of radiata pine: effect of nitrogen supply[J]. Forest Ecology and Management, 2001, 145(3): 173-180. [3] 姜立春,刘铭宇,刘银帮.落叶松和樟子松木材基本密度的变异及早期选择[J].北京林业大学学报, 2013,35(1): 1-6.Jiang L C, Liu M Y, Liu Y B. Variation of wood basic density and early selection of dahurian larch and Mongolian pine[J]. Journal of Beijing Forestry University, 2013, 35(1): 1-6. [4] Plomion C, Leprovost G, Stokes A.Wood formation in trees[J]. Plant Physiol, 2001, 127: 1513-1523. [5] Yin T M, Zhang X Y, Gunter L, et al. Differential detection of genetic loci underlying stem and root lignin content in Populus[J]. PloSONE, 2010, 5(11): e14021. [6] 秦特夫,黄洛华,周勤.杉木、I-72杨主要化学组成的株内纵向变异研究[J].林业科学研究,2004,17(1): 47-53.Qin T F, Huang L H, Zhou Q. Studies on longitu-dinal variation of main chemical compositions in Chinese-fir and Populus×euramaricana cv. I-72/58 tree[J]. Forest Research, 2004, 17(1): 47-53. [7] Rönnberg-Wästljung A C, Gullberg U, Nilsson C. Genetic parameters of growth characters in Salix viminalis grown in Sweden[J]. Canadian Journal of Forest Research, 1994, 24(9): 1960-1969. [8] Lindegaard K N, Barker J H A. Breeding willows for biomass[J]. Aspects of Applied Biology, 1997, 49: 155-162. [9] Smart L B, Cameron K D. Genetic improvement of willow(Salix spp.)as a dedicated bioenergy crop [C] // Genetic Improvement of Bioenergy Crops. New York: Springer, 2008. [10] 中国植物志编委会.中国植物志:20卷,第2分册 [M]. 北京: 科学出版社,1984. [11] Adamskia R, Pakowski Z, Kokocinska M. Cross-fiber dry wood darcy permeability of energetic willow Salix viminalis [J]. Drying Technology, 2009, 27(12): 1379-1383. [12] Monteoliva S, Senisterra G, Marlats R. Variation of wood density and fiber length in six willow clones(Salix spp.)[J]. IAWA Journal, 2005, 26(2): 197-202. [13] 成俊卿.木材学[M].北京:中国林业出版社, 1985. [14] Van Soest P J. Use of detergents in the analysis of fibrous feedsⅡ.A rapid method for the determinat-ion of fiber and lignin[J]. J Assoc Offic Anal Chem, 1963, 46: 829-835. [15] 杨胜.饲料分析及饲料质量检测技术[M].北京:北京农业大学出版社, 1994. [16] 国家技术监督局.GB/T 2677.10-1995 造纸原料综纤维素含量的测定[S]. 北京:中国标准出版社,1996. [17] Fengel D, Wegener G. Wood Chemistry, Ultrastructure Reactions [M]. Berlin: Walter de Gruyter, 1984. [18] 郭明辉. 天然林杉木材质变异规律的研究[J].世界林业研究, 1995, 8(S1): 426-432.Guo M H. Study the variation of natural forest Chinese fir[J]. Word Forestry Research, 1995, 8(S1): 426-432. [19] Johanson K. Influence of initial spacing and tree class on the basic density of Picea abies[J]. Scand J For Res, 1993, 8(1):18-27. [20] 冯弦, 陈宏伟, 刘永刚, 等. 山桂花人工林木材基本密度和纤维长度变异规律的研究[J]. 广西林业科学, 2003, 32(1): 20-23.Feng X, Chen H W, Liu Y G, et al. Research of basic density and fiber length variation in Paramic-helia bailonii[J]. Guangxi Forestry Science, 2003, 32(1): 20-23. [21] 王明庥, 黄敏仁, 阮锡根, 等. 黑杨派新无性系木材性状的遗传改良[J]. 南京林业大学学报, 1989,13(3): 9-16. Wang M X, Huang M R, Ruan X G, et al. Genetic improvement of wood characters of new clones in the aigeiros section[J]. Journal of Nanjing Forestry University, 1989,13(3): 9-16. [22] Plomion C, Leprovost G, Stokes A. Wood formation in trees[J]. Plant Physiol, 2001, 127: 1513-1523. [23] Eckstein C F, Fladung M. Wood formation in rolC transgenic aspen trees[J]. Trees, 2000, 14:297-304. [24] Solomon O L. Diurnal and circadian regulation of wood formation in Eucalyptus trees [D]. Pretoria: University of Pretoria, 2008. |