[1] 马廷.高分辨率卫星影像及其信息处理的技术模型[J].遥感信息,2001,66(3):6-10.Ma T. High resolution satellite imagery and its technology model of information processing [J]. Remote Sensing Information, 2001, 66(3):6-10. [2] Foody G M. Approaches for the production and evaluation of fuzzy land cover classifications from remotely-sensed data [J]. International Journal of Remote Sensing, 1996, 17(7): 1317-1340. [3] Tso B, Mather P M. Classification methods for remotely sensed data[M]. London, New York: Taylor & Francis, 2001: 332. [4] Pal M, Mather P M. An assessment of the effectiveness of decision tree methods for land cover classification[J]. Remote Sensing of Environment, 2003, 86(4):554-565. [5] Gallego F J. Remote sensing and land cover area estimation [J]. International Journal of Remote Sensing, 2004, 25(15): 3019-3047. [6] Rogan J, Franklin J, Stow D, et al. Mapping land-cover modifications over large areas: A comparison of machine learning algorithms [J]. Remote Sensing of Environment, 2008, 112(5):2272-2283. [7] Dixon B, Candade N. Multispectral landuse classification using neural networks and support vector machines: one or the other, or both?[J]. International Journal of Remote Sensing, 2008, 29(4):1185-1206. [8] Giacinto G, Roli F. An approach to the automatic design of multiple classifier systems[J]. Pattern Recognition Letters, 2001, 22(1): 25-33. [9] Breiman L. Random forests [J]. Machine Learning, 2001, 45(1):5-32. [10] Rodríguez-Galiano V F, Abarca-Hernández F, Ghimire B, et al. Incorporating spatial variability measures in land-cover classification using random forest [J]. Procedia Environmental Sciences, 2011, 3: 44-49. [11] Gislason P O, Benediktsson J A, Sveinsson J R. Random forests for land cover classification [J]. Pattern Recognition Letters, 2006, 27(4): 294-300. [12] Verikas A, Gelzinis A, Bacauskiene M. Mining data with random forests: A survey and results of new tests [J]. Pattern Recognition, 2011, 44(2): 330-349. [13] Larivière B, Van den Poel D. Predicting customer retention and profitability by using random forests and regression forests techniques [J]. Expert Systems with Applications, 2005, 29(2): 472-484. [14] Smith A, Sterba-Boatwright B, Mott J. Novel application of a statistical technique, Random Forests, in a bacterial source tracking study [J]. Water Research, 2010, 44(14): 4067-4076. [15] Lee S L A, Kouzani A Z, Hu E J. Random forest based lung nodule classification aided by clustering[J]. Computerized Medical imaging and Graphics, 2010, 34(7): 535-542. [16] 乌日汗,宋丽萍,温小荣,等.深圳特区城市绿地景观格局现状分析[J].南京林业大学学报:自然科学版, 2008,32(3): 79-82.Wu R H, Song L P, Wen X R, et al. Analysis of the current states on landscape pattern of urban green space in Shenzhen city[J]. Journal of Nanjing Forestry University: Natural Sciences Edition, 2008, 32(3):79-82. [17] 张存.基于Quick Bird影像的面向对象信息提取方法比较实验研究[D].哈尔滨:东北大学,2009.Zhang C. Comparative experimentation study on information extraction of object-oriented based on quick bird image [D]. Harbin: Northeastern University, 2009. [18] Haralick R M, Shanmugam K, Dinstein I H. Textural features for image classification [J]. IEEE Transactions on Systems, Man and Cybernetics, 1973(6): 610-621. [19] Rodriguez-Galiano V F, Ghimire B, Rogan J, et al. An assessment of the effectiveness of a random forest classifier for land-cover classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 67: 93-104. [20] 李欣海.随机森林模型在分类与回归分析中的应用[J].应用昆虫学报,2013,50(4):1190-1197.Li X H.Using “random forest” for classification and regression [J]. Applied Entomology, 2013, 50(4):1190-1197. |