南京林业大学学报(自然科学版) ›› 2015, Vol. 39 ›› Issue (02): 163-168.doi: 10.3969/j.issn.1000-2006.2015.02.028
詹天翼1,蒋佳荔1, 2,吕建雄1*
出版日期:
2015-03-31
发布日期:
2015-03-31
基金资助:
ZHAN Tianyi1, JIANG Jiali1, 2, LYU Jianxiong1*
Online:
2015-03-31
Published:
2015-03-31
摘要: 从木材构造、化学组分和水分等因素对木材动态黏弹性的影响及其机理进行了综合评述。从木材构造方面,阐述了树种、应力木,以及木材的心边材、幼龄材与成熟材、纹理方向、早晚材和微纤丝角等对木材动态黏弹性的影响规律; 针对木材化学组分,重点归纳了弹性纤维、黏弹性基体以及抽提物对动态黏弹性的影响机制; 总结了木材动态黏弹的水分依存性。最后,对木材动态黏弹性的进一步研究提出了建议。
中图分类号:
詹天翼,蒋佳荔,吕建雄. 木材动态黏弹性的研究现状与发展趋势[J]. 南京林业大学学报(自然科学版), 2015, 39(02): 163-168.
ZHAN Tianyi, JIANG Jiali, LYU Jianxiong. Research status and trend on wood dynamic viscoelastic properties[J].Journal of Nanjing Forestry University (Natural Science Edition), 2015, 39(02): 163-168.DOI: 10.3969/j.issn.1000-2006.2015.02.028.
[1] Bodig J. Mechanics of wood and wood composites [M]. New York: Van Nostrand Reinhold Company, 1982. [2] 何曼君,陈维孝,董西侠. 高分子物理 [M]. 上海:复旦大学出版社, 2007. [3] 王逢瑚. 木质材料流变学 [M]. 哈尔滨:东北林业大学出版社, 2005. [4] 渡辺治人. 木材应用基础 [M]. 上海:上海科学技术出版社, 1984 [5] Becker H, Noack D. Studies on dynamic torsional viscoelasticity of wood [J]. Wood Science and Technology, 1968,2(3):213-230. [6] Jiang J L, Lu J X. Impact of temperature on the linear viscoelastic region of wood [J]. Canadian Journal of Forest Research, 2009,39(11):2092-2099. [7] Sun N J, Das S, Frazier C E. Dynamic mechanical analysis of dry wood: linear viscoelastic response region and effects of minor moisture changes [J]. Holzforschung,2007,61(1):28-33. [8] Placet V, Passard J, Perré P. Viscoelastic properties of wood across the grain measured under water-saturated conditions up to 135 ℃: evidence of thermal degradation [J]. Journal of Materials Science,2008,43(9):3210-3217. [9] Bag R, Beaugraud J, Dole P, et al. Viscoelastic properties of woody hemp core [J]. Holzforschung,2011,65(2):239-247. [10] Zhang T, Bai S L, Zhang Y F, et al. Viscoelastic properties of wood materials characterized by nanoindentation experiments [J]. Wood Science and Technology,2012,46(5):1003-1016. [11] Tanimoto T, Nakano T. Side-chain motion of components in wood samples partially non-crystallized using NaOH-water solution [J]. Materials Science and Engineering: C,2013,33(3):1236-1241. [12] Birkinshaw C, Buggy M, Henn G G. Dynamic mechanical analysis of wood [J]. Journal of Materials Science Letters,1986,5(9):898-900. [13] Placet V, Passard J, Perré P. Viscoelastic properties of green wood across the grain measured by harmonic tests in the range 0-95 ℃: Hardwood vs. softwood and normal wood vs. reaction wood [J]. Holzforschung,2007,61(5):548-557. [14] Brémaud I, Ka?m Y E, Guibal D, et al. Characterisation and categorization of the diversity in viscoelastic vibrational properties between 98 wood types [J]. Annals of Forest Science,2012,69(3):373-386. [15] Olsson A M, Salmén L. The effect of lignin composition on the viscoelastic properties of wood [J]. Nordic Pulp and Paper Research Journal,1997,12(3):140-144. [16] Havimo M. A literature-based study on the loss tangent of wood in connection with mechanical pulping [J]. Wood Science and Technology,2009,43(7-8):627-642. [17] Shupe T F, Groom L H, Eberhardt T L, et al. Selected mechanical and physical properties of Chinese tallow tree juvenile wood [J]. Forest Products Journal,2008,58(4):90-93 [18] Taghiyari H R, Karimi A N, Parsapajouh D, et al. Study on the longitudinal gas permeability of juvenile wood and mature wood [J]. Special Topics and Reviews in Porous Media-An International Journal,2010(1):31-38. [19] Bal B C, Bekta 瘙 塂 i. The effect of heat treatment on some mechanical properties of juvenile wood and mature wood of Eucalyptus grandis[J]. Drying Technology,2013,31(4):479-485. [20] Song K L, Yin Y F, Salmén L, et al. Changes in the properties of wood cell wall during the transformation from sapwood to heartwood [J]. Journal of Materials Science,2014,49(4):1734-1742. [21] Lenth C A. Wood material behavior in severe environments [D]. Virginia: Virginia State University,1999. [22] Backman A C, Lindberg K A H. Differences in wood material response for radial and tangential direction as measured by dynamic mechanical thermal analysis [J]. Journal of Materials Science,2001,36(15):3777-3783. [23] Gibson L J, Ashby M F. Cellular solids, structure and properties [M]. Oxford: Pergamon Press,1997. [24] Theocaris P S, Spathis G, Sideridis E. Elastic and viscoelastic properties of fibre-reinforced composite materials [J]. Fibre Science and Technology,1982,17(3):169-181. [25] Hoffmann G, Poliszko S. Temperature-frequency transformation in dielectric thermal analysis of wood relaxation properties [J]. Journal of Applied Polymer Science,1996,59(2):269-275. [26] Kelly S S, Rilas T G, Glasser W G. Relaxation behavior of amorphous components of wood [J]. Journal of Materials Science,1987,22(2):617-625. [27] Nakano T, Honma S, Matsumoto A. Physical properties of chemically-modified wood containing metal.Ⅰ. Effects of metal on dynamic mechanical properties of half-esterified wood [J]. Mokuzai Gakkaishi,1990,36(12):1063-1068. [28] Mano F J. The viscoelastic properties of cork [J]. Journal of Materials Science,2002,37(2):257-263. [29] Jiang J L, Lu J X. Anisotropic characteristics of wood dynamic viscoelastic properties [J]. Forest Products Journal,2009,59(7/8):59-64. [30] Norimoto M, Zhao G J. Dielectric-relaxation of water adsorbed on wood [J]. Mukuzai Gakkaishi,1993,39(3):249-257. [31] Hori R, Müller M, Watanaba U, et al. The importance of seasonal differences in the cellulose microfibril angle in softwoods in determining acoustic properties [J]. Journal of Materials Science,2002,37(20):4279-4284. [32] Obataya E, Norimoto M, Gril J. The effects of adsorbed water on dynamic mechanical properties of wood [J]. Polymer,1998,39(14):3059-3064. [33] Mukudai J, Yata S. Modeling and simulation of viscoelastic behavior(tensile strain)of wood under moisture change [J]. Wood Science and Technology,1986,20(4):335-348. [34] Mukudai J, Yata S. Further modeling and simulation of viscoelastic behavior(bending deflection)of wood under moisture change [J]. Wood Science and Technology,1987,21(1):49-63. [35] Kojima Y, Yamamoto H. Effect of microfibril angle on the longitudinal tensile creep behavior of wood [J]. Journal of Wood Science,2004,50(4):301-306. [36] Engelund E T, Salmén L. Tensile creep and recovery of Norway spruce influenced by temperature and moisture [J]. Holzforschung,2012,66(8):959-965. [37] Cave I D. The anisotropic elasticity of the plant cell wall [J]. Wood Science and Technology,1968,2(4):268-278. [38] Cave I D. The longitudinal Young’s modulus of Pinus radiate [J]. Wood Science and Technology,1969,3(1):40-48. [39] Salmén L. Micromechanical understanding of the cell-wall structure [J]. Comptes Rendus Biologies,2004,327(9/10):873-880. [40] Bonarski J T, Olek W. Texture function application for wood ultrastructure description. Part 1: theory [J]. Wood Science and Technology,2006,40(2):159-171. [41] Page D H, Elhosseiny F, Winkler K, et al. Elastic modulus of single wood pulp fibers [J]. Tappi,1977,60(4):114-117. [42] Donaldson L. Microfibril angle: measurement, variation and relationships: A review [J]. IAWA Journal,2008,29(4):345-386. [43] Norimoto M. Dieletric properties of wood [J]. Wood Research, 1976,59/60:106-152. [44] Kimura M, Nakano J. Mechanical relaxation of cellulose at low temperatures [J]. Journal of Polymer Science: Polymer Letters Edition,1976,14(12):741-745. [45] Toba K, Yamamoto H. On the mechanical interaction between cellulose microfibrils and matrix substances in wood cell wall: effects of chemical pretreatment and subsequent repeated dry-and-wet treatment [J]. Journal of Wood Science,2013,59(5):359-366. [46] Lindberg J J, Laanter? M. Hydrogen bonds and macromolecules: The interaction between wood cells and water [J]. Journal of Macromolecular Science,1996,33(10):1385-1388. [47] Salmén L, Olsson A M. Interaction between hemicelluloses, lignin and cellulose: structure-property relationships [J]. Journal of Pulp and Paper Science,1998,24(3):99-103. [48] Bergander A, Salmén L. Cell wall properties and their effects on the mechanical properties of fibers [J]. Journal of Materials Science,2002,37(1):151-156. [49] ?keroholm M, Salmén L. The oriented structure of lignin and its viscoelastic properties studied by static and dynamic FT-IR spectroscopy [J]. Holzforschung,2003,57(5):459-465. [50] Sugiyama M, Obataya E, Norimoto M. Viscoelastic properties of the matrix substance of chemically treated wood [J]. Journal of Materials Science,1998,33(14):3505-3510. [51] Salmén L. Viscoelastic properties of in situ lignin under water-saturated conditions [J]. Journal of Materials Science,1984,19(9):3090-3096. [52] Minato K, Bremaud I, Suzuki S, et al. Extractives of muirapiranga(Brosimun sp.)and its effects on the vibrational properties of wood [J]. Journal of Wood Science,2010,56(1):41-46. [53] Matsunage M, Obataya E, Minato K, et al. Working mechanism of adsorbed water on the vibrational properties of wood impregnated with extractives of pernambuco(Guilandina echinata Spreng.)[J]. Journal of Wood Science,2000,46(2):122-129. [54] Yano H. The changes in the acoustic properties of western red cedar due to methanol extraction [J]. Holzforschung,1994,48(6):491-495. [55] Yano H, Kyou K, Furuta Y, et al. Acoustic properties of Brazilian rosewood used for guitar back plates [J]. Mokuzai Gakkaishi,1995,41(1):17-24. [56] Skarr C. Wood-water relations [M]. New York: Springer-verlag,1988. [57] 赵广杰. 木材细胞壁中吸着水的介电弛豫 [M]. 北京:中国林业出版社,2002. [58] Cousins W J. Elastic modulus of lignin as related to moisture content [J]. Wood Science and Technology,1976,10(1):9-17. [59] Cousins W J. Young’s modulus of hemicellulose as related to moisture content [J]. Wood Science and Technology,1978,12(3):161-167. [60] Hillis W E. High temperature and chemical effects on wood stability. Part 1. General considerations [J]. Wood Science and Technology,1984,18(4):535-542. [61] Furuta Y, Aizawa H, Yano H, et al. Thermal-softening properties of water-swollen. Ⅳ: The effects of chemical constituents of the cell wall on thermal-softening properties of wood [J]. Mokuzai Gakkaishi,1997,43(9):725-730. [62] 周兆兵,那斌,罗婉珺,等.速生杨木动态黏弹性与初始含水率的关系 [J]. 南京林业大学学报: 自然科学版,2011,35(6): 96-100.Zhou Z B, Na B, Luo W J, et al. Relationships between dynamic viscoelastic properties and initial moisture content of fast-growing poplar [J]. Journal of Nanjing Forestry University:Natural Sciences Edition,2011,35(6):96-100. [63] Obataya E, Yokuyama M, Norimoto M. Mechanical and dielectric relaxations of wood in a low temperature rangeⅠ. Relaxations due to methylol groups and adsorbed water [J]. Mokuzai Gakkaishi,1996,42(3):243-249. [64] Obataya E, Norimoto M, Tomita B. Mechanical relaxation process of wood in the low-temperature range [J]. Journal of Applied Polymer Science,2001,81(13):3338-3347. [65] Furuta Y, Obata Y, Kanayama K. Thermal-softening properties of water-swollen wood:the relaxation process due to water soluble polysaccharides [J]. Journal of Materials Science,2001,36(4):887-890. [66] 蒋佳荔,吕建雄. 木材动态粘弹性的含水率依存性 [J]. 北京林业大学学报,2006(S2):118-123. Jiang J L, Lü J X. Moisture dependence of the dynamic viscoelastic properties for wood [J]. Journal of Beijing Forestry University, 2006(S2): 118-123. |
[1] | 朱显亮, 周长品, 贾翠蓉, 翁启杰, 李发根. 尾细桉生长和木材密度关联SNP挖掘与候选基因定位[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 143-150. |
[2] | 朱越骅, 潘彪, 於朝广, 殷云龙, 张耀丽. ‘中山杉118’与落羽杉胸径生长及木材密度的比较研究[J]. 南京林业大学学报(自然科学版), 2019, 43(6): 201-206. |
[3] | 杨婷婷,管昉立,徐爱俊. 基于Graph Cut算法的多株立木轮廓提取方法[J]. 南京林业大学学报(自然科学版), 2018, 42(06): 91-98. |
[4] | 汪殿蓓,李建华,田春元,钟亚琴,段丽君,杨先忠. 湖北省野生青檀纤维形态特征及差异[J]. 南京林业大学学报(自然科学版), 2018, 42(01): 169-174. |
[5] | 杨建飞,宁莉萍,杨了,王天石,陈甜甜,钱钰滢. 黑壳楠生长量及木材解剖特征的径向变异[J]. 南京林业大学学报(自然科学版), 2018, 42(01): 181-187. |
[6] | 袁炳楠,董悦,郭明辉. 木材表面g-C3N4的固定及其光降解性能表征[J]. 南京林业大学学报(自然科学版), 2018, 42(01): 193-197. |
[7] | 屠坤坤,孔丽琢,王小青. 木材表面SiO2/环氧树脂/氟硅烷复合超疏水膜的构建[J]. 南京林业大学学报(自然科学版), 2017, 41(06): 158-162. |
[8] | 刘嵘,杨淑敏,李晖,翟志文,费本华. 毛竹材导管分子的纹孔特征[J]. 南京林业大学学报(自然科学版), 2017, 41(06): 163-168. |
[9] | 王玉婷,徐华东,周涵婷,曹延珺,吉莉. 环境温度对活立木内部含水率变化的影响[J]. 南京林业大学学报(自然科学版), 2017, 41(05): 107-113. |
[10] | 王雪玉,吕文华. 增强-染色复合改性杨木的强度和耐光色牢度[J]. 南京林业大学学报(自然科学版), 2017, 41(05): 147-151. |
[11] | 管成,张厚江,苗虎,周卢婧. 无损检测足尺人造板弹性模量和面内剪切模量[J]. 南京林业大学学报(自然科学版), 2017, 41(04): 153-159. |
[12] | 刘丰禄,姜芳,王喜平,张厚江,刘兴凯. 应力波在落叶松活立木中的传播规律[J]. 南京林业大学学报(自然科学版), 2017, 41(03): 133-139. |
[13] | 高鑫,蔡家斌,金菊婉,庄寿增. 利用核磁共振测定木材润胀细胞壁的水分含量与孔径分布[J]. 南京林业大学学报(自然科学版), 2017, 41(02): 150-156. |
[14] | 何盛,徐军,吴再兴,包永洁,于辉,陈玉和. 毛竹与樟子松木材孔隙结构的比较[J]. 南京林业大学学报(自然科学版), 2017, 41(02): 157-162. |
[15] | 徐华东,王玉婷,王立海,王喜平. 低温环境下木材细胞中冰晶的形成和传播研究综述[J]. 南京林业大学学报(自然科学版), 2017, 41(02): 169-174. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||