The properties of reaction wood from bending and inclination stem in Liriodendron chinense× L. tulipifera was investigated by microscopic, FTIR and XRD. The results showed that in tension zone the gelatinous fiber ratio was the lowest and the number and mean diameter of vessel and tissue proportion was significant difference comparing with that in opposite and transition zone in bending stem. The IR characteristics in tension zone were similar to the opposite and transition zone. The relatively ratio of I1505/I1739 was higher in tension zone than other two zones and indicated that it has higher lignin content. The cellulose crystallinity in tension and transition zone was observably lower than that in opposite. On the contrary, in tension zone the gelatinous fiber ratio was higher(26.1%)and the number and mean diameter of vessel was decreased comparing to that in transition zone of inclination stem. The peaks intensity at 1739 cm-1 and 1505 cm-1 were decreased in tension zone than that in other two zones. This indicated that the hemicellulose and lignin content was lower in tension zone. The cellulose crystallinity in tension and transition zone was higher dramatically than that in opposite. All of these suggested that the properties of tension wood were affected by stem growth morphology in Liriodendron chinense×L. tulipifera.
SHI Jiangtao, WANG Feng, LUO Jiayan.
Anatomical feature and spectroscopy of reaction wood in Liriodendron chinense×L. tulipifera[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2015, 39(03): 125-129 https://doi.org/10.3969/j.issn.1000-2006.2015.03.023
中图分类号:
S781
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 成俊卿. 木材学[M]. 北京: 中国林业出版社, 1985. [2] 尹思慈.木材品质和缺陷[M]. 北京: 中国林业出版社, 1990. [3] Timell T E. The chemical composition of tension wood [J]. Svensk Papp Tidn, 1969,72:173-181. [4] Kollmann F F P, C?té WA Jr. Principles of wood science and technology I: solid wood [M]. Verlag: Springer, 1968. [5] Matsuzaki J, Masumori M, Tange T. Phototropic bending of non-elongating and radially growing woody stems results from asymmetrical xylem formation [J]. Plant, Cell and Environment, 2007, 30: 646-653. [6] 罗蓓,杨守禄.栎木应力木生长偏向性分析[J].山东林业科技, 2010(5):6-9.Luo B, Yang S L. A study of growth ring eccentricity and reaction wood in oak branch wood [J]. Shangdong Forestry Science and Technology, 2010(5):6-9. [7] 罗蓓,聂梅凤.水曲柳枝桠材应力木的年轮偏向性分析[J].山东林业科技, 2010(2):6-8.Luo B, Nie M F. The analysis of growthring beflection pattern in ash branch reaction wood [J]. Shangdong Forestry Science and Technology, 2010(2):6-8. [8] 陈承德,黄日明,林元辉,等.三种阔叶树材枝桠材应拉木和对应木的解剖特征及材性的研究[J].福建林业科技, 1999, 26(3):7-12.Chen C D, Huang R M, Lin Y H, et al.Study on the anatomical features and properties of tension wood and opposite wood of branches of three hardwoods [J]. Journal of Fujian Forestry Science and Technology, 1999, 26(3):7-12. [9] Wardrop A B, Dadswell H E.The nature of reaction wood: IV. Variations in cell wall organization of tension wood fibres [J]. Australian Journal of Botany, 1955, 3(2): 177-189. [10] Mathew F. Structural studies on Tention wood of Hevea brasiliensis(para rubber)with special reference to clonal variability [D]. Kotayam: Mahatma Gandhi University, 2003. [11] 鲍甫成,江泽慧.中国主要树种人工林木材性质[M].北京:中国林业出版社, 1997. [12]潘彪, 徐朝阳, 王章荣. 杂交鹅掌楸木材解剖性质及其径向变异规律[J]. 南京林业大学学报:自然科学版, 2005, 29(1): 79-82.Pan B, Xu Z Y, Wang Z R. Wood anatomical properties and its radial variation of Liriodendron chinense×L. tulipifera [J]. Journal of Nanjing Forestry University:Natural Sciences Edition, 2005, 29(1): 79-82. [13]季孔庶, 王章荣, 温小荣. 杂交鹅掌楸生长表现及其木材胶合板性能[J]. 南京林业大学学报:自然科学版, 2005, 29(1): 71-74.Ji K S, Wang Z R, Wen X R. Growth heterosis and plywood characters of Liriodendron chinense×L. tulipifera [J]. Journal of Nanjing Forestry University:Natural Sciences Edition, 2005, 29(1): 71-74. [14]刘亚梅,刘盛全.欧美杨107杨苗人工倾斜树干应拉木形成特征及其解剖特性[J].林业科学, 2010, 46(5):133-139.Liu Y M, Liu S Q. Formation and anatomical characteristics of tension wood in stem of poplar I-107 seedlings(Populus× euramericana cv. ‘74/76’)induced by artifical inclination [J]. Scientia Silvae Sinicae, 2010, 46(5):133-139. [15] 刘盛全,江泽慧.刺楸木材应拉木材性研究[J].林业科学, 1996, 32(5):470-474.Liu S Q, Jiang Z H. Studies on the properties of tension wood in Kalopanax septemlobus Thunb. Koidz [J]. Scientia Silvae Sinicae, 1996, 32(5):470-474. [16]李坚. 木材波谱学[M]. 北京:科学出版社, 2003. [17] Pandey K K, Pitman A J. Examination of the lignin content in a softwood and a hardwood decayed by a brown-rot fungus with the acetyl bromide method and fourier transform infrared spectroscopy [J]. Journal of Polymer Science, Part A: Polymer Chemistry, 2004, 42:2340-2346. [18] 李改云,黄安民,秦特夫,等.马尾松木材褐腐降解的红外光谱研究[J].光谱学与光谱分析, 2010, 30(8): 2133-2136.Li G Y, Huang A M, Qin T F, et al.FTIR studies of masson pine wood decayed by brown rot fungi [J]. Spectroscopy and Spectral Analysis, 2010, 30(8): 2133-2136. [19] Yoshida M, Ohta H, Yamamoto H, et al. Tensile growth stress and lignin distribution in the cell walls of yellow poplar,Liriodendron tulipifera Linn. [J]. Tree, 2002, 16:457-464. [20]周亮,刘盛全,高慧,等.欧美杨107正常木与应拉木纤维形态和化学组成比较[J].西北农林科技大学学报:自然科学版, 2012, 40(2):67-68.Zhou L, Liu S Q, Gao H, et al. Comparison of fiber morphological properties and chemical compositions between normal wood and tension wood in poplar clone 107(Populus×euramericana cv. ‘Neva’)tree [J]. Journal of Northwest A&F University:Nat Sci Ed, 2012, 40(2):67-68. [21] Pramod A, Rao K S, Sundberg A. Structural, histochemical and chemical characterization of normal, tension and opposite wood of Subabul(Leucaena leucocephala(Lam.)De wit.)[J]. Wood Science and Technology, 2013, 47(4):777-796. [22] Aguayo M G, Quintupill L, Castillo R, et al. Determination of differences in anatomical and chemical characteristics of tension and opposite wood of 8 years old Eucalyptus globulus [J]. Maderas Ciencia Technologiz, 2010, 12(3):241-251. [23] Mia A J. Organization of tension wood fibers with special reference to the gelatinous layerin Populus tremuloides Michx[J]. Wood Science, 1968(1):105-115.