氮沉降对土壤微生物影响的研究进展

赵超,彭赛,阮宏华,张雅坤

南京林业大学学报(自然科学版) ›› 2015, Vol. 39 ›› Issue (03) : 149-155.

PDF(1512856 KB)
PDF(1512856 KB)
南京林业大学学报(自然科学版) ›› 2015, Vol. 39 ›› Issue (03) : 149-155. DOI: 10.3969/j.issn.1000-2006.2015.03.027
综合述评

氮沉降对土壤微生物影响的研究进展

  • 赵 超1,2,彭 赛1,2,阮宏华1,2*,张雅坤1,2
作者信息 +

Effects of nitrogen deposition on soil microbes

  • ZHAO Chao1,2, PENG Sai1,2, RUAN Honghua1,2*, ZHANG Yakun1,2
Author information +
文章历史 +

摘要

土壤中氮沉降增加作为全球环境变化的重要现象之一,给人类带来了巨大挑战。笔者综述了近年来氮沉降对土壤微生物的影响研究,从土壤微生物生物量、群落结构和多样性、微生物活性、功能基因与底物利用等方面进行总结分析。综合来看,氮沉降对土壤微生物的影响主要表现为:①土壤微生物生物量、真菌生物量以及真菌与细菌生物量比值下降; ②外生菌根真菌子实体生产力和外生菌根丰度下降,外生菌根真菌群落结构组成改变; ③丛枝菌根真菌群落结构组成改变,但氮沉降对丛枝菌根真菌的多样性和对腐生真菌的影响结果存在较大争议; ④细菌群落结构组成改变,贫营养细菌丰度下降,富营养细菌丰度上升; ⑤土壤微生物活性下降,某些功能基因丰度下降,对复杂有机碳、氮的代谢能力下降。同时,相关研究报道表明:氮沉降可以直接或通过降低土壤pH,增加微生物的碳限制,改变底物的数量和质量等途径间接对微生物生物量和群落结构产生影响。

Abstract

Increased nitrogen deposition may impact on soil microbes which play an important role in ecosystems. We reviewed the effects of nitrogen deposition on soil microbes in respect of soil microbial biomass, microbial structure and diversity, microbial activity, functional genes, and substrate utilization. In general, the potential effects of nitrogen deposition included the following aspects: ① Decreased soil microbial, fungal and the ratio of fungal to bacterial biomass; ② Led to a reduction of the productivity of ectomycorrhizal fungal fruit body and the arbuscular mycorrhiza abundance; ③ Altered the structure of arbuscular mycorrhizal fungal community, but there were still some debates on the effects on arbuscular mycorrhizal fungal diversity and saprophytic fungi; ④ The bacterial community structure changed. Oligotrophic bacterial abundance decreased, while copiotrophic bacterial abundance increased; ⑤ Soil microbial activity, some functional genes abundance and the catabolic capabilities of complex organic carbon and nitrogen decreased. Moreover, nitrogen deposition have been shown to affect microbes direct or through decreasing soil pH, making microbes carbon-limited, changing the quantity and quality of litter indirectly.

引用本文

导出引用
赵超,彭赛,阮宏华,张雅坤. 氮沉降对土壤微生物影响的研究进展[J]. 南京林业大学学报(自然科学版). 2015, 39(03): 149-155 https://doi.org/10.3969/j.issn.1000-2006.2015.03.027
ZHAO Chao, PENG Sai, RUAN Honghua, ZHANG Yakun. Effects of nitrogen deposition on soil microbes[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2015, 39(03): 149-155 https://doi.org/10.3969/j.issn.1000-2006.2015.03.027
中图分类号: S718.5   

参考文献

[1] Galloway J N, Townsend A R, Erisman J W, et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions[J]. Science, 2008, 320(5878): 889-892.
[2] Canfield D E, Glazer A N, Falkowski P G. The evolution and future of Earth’s nitrogen cycle[J]. Science, 2010, 330(6001): 192-196.
[3] Lamarque J F, Kiehl J T, Brasseur G P, et al. Assessing future nitrogen deposition and carbon cycle feedback using a multimodel approach: Analysis of nitrogen deposition[J]. Journal of Geophysical Research:Atmospheres(1984-2012), 2005, 110(D19303):1-21.
[4] Liu X, Zhang Y, Han W, et al. Enhanced nitrogen deposition over China[J]. Nature, 2013, 494(7438): 459-462.
[5] Aber J D, Nadelhoffer K J, Steudler P, et al. Nitrogen saturation in northern forest ecosystems[J]. BioScience, 1989, 39(6): 378-386.
[6] Eisenlord S D, Freedman, Zak D R, et al. Microbial mechanisms mediating increased soil C storage under elevated atmospheric N deposition[J]. Applied and Environmental Microbiology, 2013, 79(4): 1191-1199.
[7] 张乃莉, 郭继勋, 王晓宇, 等. 土壤微生物对气候变暖和大气N沉降的响应[J]. 植物生态学报, 2007, 31(2): 252-261.Zhang N L, Guo J X, Wang X Y,et al. Soil microbial feedbacks to climate warming and atmospheric N deposition[J]. Journal of Plant Ecology, 2007, 31(2): 252-261.
[8] Treseder K K. Nitrogen additions and microbial biomass: A meta-analysis of ecosystem studies[J]. Ecology Letters, 2008, 11(10): 1111-1120.
[9] Liu L, Greaver T L. A global perspective on belowground carbon dynamics under nitrogen enrichment[J]. Ecology Letters, 2010, 13(7): 819-828.
[10] Li L J, Zeng D H, Yu Z Y, et al. Soil microbial properties under N and P additions in a semi-arid, sandy grassland[J]. Biology and Fertility of Soils, 2010, 46(6): 653-658.
[11] 王晖, 莫江明, 鲁显楷, 等. 南亚热带森林土壤微生物量碳对氮沉降的响应[J]. 生态学报, 2008, 28(2): 470-478.Wang H, Mo J M, LU X K,et al. Effects of elevated nitrogen deposition on soil microbial biomass carbon in the main subtropical forests of southern China[J]. Acta Ecologica Sinica, 2008, 28(2): 470-478.
[12] 周薇, 王兵, 李钢铁. 大气氮沉降对森林生态系统影响的研究进展[J]. 中央民族大学学报:自然科学版, 2010(1):34-40. Zhou W, Wang B, Li G T. Progress on the impact of atmospheric nitrogen deposition on forest ecosystems[J]. Journal of MUC:Natural Sciences Edition, 2010(1): 34-40.
[13] Lu X K, Mo J M, Gundersern P, et al. Effect of simulated N deposition on soil exchangeable cations in three forest types of subtropical China[J]. Pedosphere, 2009, 19(2): 189-198.
[14] Baath E, Anderson T H. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques[J]. Soil Biology and Biochemistry, 2003, 35(7):955-963.
[15] Aciego Pietriy J C, Brookes P. Relationships between soil pH and microbial properties in a UK arable soil[J]. Soil Biology and Biochemistry, 2008, 40(7): 1856-1861.
[16] Liu W, Jiang L, Hu S J, et al. Decoupling of soil microbes and plants with increasing anthropogenic nitrogen inputs in a temperate steppe[J]. Soil Biology and Biochemistry, 2014, 72: 116-1122.
[17] Currey P M, Johnson D, Dawson L A, et al. Five years of simulated atmospheric nitrogen deposition have only subtle effects on the fate of newly synthesized carbon in Calluna vulgaris and Eriophorum vaginatum[J]. Soil Biology and Biochemistry, 2011, 43(3): 495-502.
[18] Deforest J L, Zak D R, Pregitzer K S, et al. Atmospheric nitrate deposition, microbial community composition, and enzyme activity in northern hardwood forests[J]. Soil Science Society of America Journal, 2004, 68(1): 132-138.
[19] Janssens I A, Dieleman W, Luyssaert S, et al. Reduction of forest soil respiration in response to nitrogen deposition[J]. Nature Geoscience, 2010, 3(5): 315-322.
[20] Deforest J L, Zak D R, Pregitzer K S, et al. Atmospheric nitrate deposition and the microbial degradation of cellobiose and vanillin in a northern hardwood forest[J]. Soil Biology and Biochemistry, 2004, 36(6): 965-971.
[21] Compton J E, Watrud L S, Arlene Porteous L, et al. Response of soil microbial biomass and community composition to chronic nitrogen additions at Harvard forest[J]. Forest Ecology and Management, 2004, 196(1): 143-158.
[22] Strickland M S, Rousk J. Considering fungal: bacterial dominance in soils-Methods, controls, and ecosystem implications[J]. Soil Biology and Biochemistry, 2010, 42(9): 1385-1395.
[23] Demoling F, Nilsson L O, B??th E. Bacterial and fungal response to nitrogen fertilization in three coniferous forest soils[J]. Soil Biology and Biochemistry, 2008, 40(2): 370-379.
[24] Rousk J, Brookes P C, B??th E. Fungal and bacterial growth responses to N fertilization and pH in the 150-year ‘Park Grass’ UK grassland experiment[J]. FEMS Microbiology Ecology, 2011, 76(1): 89-99.
[25] Allison S D, Czimczik C I, Treseder K K. Microbial activity and soil respiration under nitrogen addition in Alaskan boreal forest[J]. Global Change Biology, 2008, 14(5): 1156-1168.
[26] H?gberg M N, Briones M J I, Keel S G, et al. Quantification of effects of season and nitrogen supply on tree below-ground carbon transfer to ectomycorrhizal fungi and other soil organisms in a boreal pine forest[J]. New Phytologist, 2010, 187(2): 485-493.
[27] 薛璟花, 莫江明, 李炯, 等. 氮沉降对外生菌根真菌的影响[J]. 生态学报, 2004(8): 1789-1796. Xue J H, Mo J M, Li J,et al. Effects of nitrogen deposition on ectomycorrhizal fungi [J]. Acta Ecologica Sinica, 2004(8): 1789-1796.
[28] Van Diepen L T A, Lilleskov E A, Pregitzer K S, et al. Simulated nitrogen deposition causes a decline of intra-and extraradical abundance of arbuscular mycorrhizal fungi and changes in microbial community structure in Northern Hardwood forests[J]. Ecosystems, 2010, 13(5): 683-695.
[29] 曹志平, 李德鹏, 韩雪梅. 土壤食物网中的真菌/细菌比率及测定方法[J]. 生态学报, 2011, 31(16): 4741-4748. Cao Z P, Li D P, Han X M. The fungal to bacterial ratio in soil food webs, and its measurement[J]. Acta Ecologica Sinica, 2011, 31(16): 4741-4748.
[30] Wallenstein M D, McNulty S, Fernandez I J, et al. Nitrogen fertilization decreases forest soil fungal and bacterial biomass in three long-term experiments[J]. Forest Ecology and Management, 2006, 222(1-3): 459-468.
[31] Ramirez K S, Craine J M, Fierer N. Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes[J]. Global Change Biology, 2012, 18(6): 1918-1927.
[32] Treseder K K. A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies[J]. New Phytologist, 2004, 164(2): 347-355.
[33] Kj?ller R, Nilsson L O, Hansen K, et al. Dramatic changes in ectomycorrhizal community composition, root tip abundance and mycelial production along a stand-scale nitrogen deposition gradient[J]. New Phytologist, 2012, 194(1): 278-286.
[34] Lilleskov E A, Hobbie E A, Horton T R. Conservation of ectomycorrhizal fungi: exploring the linkages between functional and taxonomic responses to anthropogenic N deposition[J]. Fungal Ecology, 2011, 4(2): 174-183.
[35] Cox F, Barsoum N, Lilleskov E A, et al. Nitrogen availability is a primary determinant of conifer mycorrhizas across complex environmental gradients[J]. Ecology Letters, 2010, 13(9): 1103-1113.
[36] Lucas R W, Casper B B. Ectomycorrhizal community and extracellular enzyme activity following simulated atmospheric N deposition[J]. Soil Biology and Biochemistry, 2008, 40(7): 1662-1669.
[37] Avis P G, Mueller G M, Lussenhop J. Ectomycorrhizal fungal communities in two North American oak forests respond to nitrogen addition[J]. New Phytologist, 2008, 179(2): 472-483.
[38] Jarvis S, Woodward S, Alexander I, et al. Regional scale gradients of climate and nitrogen deposition drive variation in ectomycorrhizal fungal communities associated with native Scots pine[J]. Global Change Biology, 2013, 19(6): 1688-1696.
[39] Pardo L H, Fenn M E, Goodale C L, et al. Effects of nitrogen deposition and empirical nitrogen critical loads for ecoregions of the United States[J]. Ecological Applications, 2011, 21(8): 3049-3082.
[40] Jumpponen A, Trowbridge J, Mandyam K, et al. Nitrogen enrichment causes minimal changes in arbuscular mycorrhizal colonization but shifts community composition-evidence from rDNA data[J]. Biology and Fertility of Soils, 2005, 41(4):217-224.
[41] Santos J C, Finlay R D, Tehler A. Molecular analysis of arbuscular mycorrhizal fungi colonising a semi-natural grassland along a fertilisation gradient[J]. New Phytologist, 2006, 172(1): 159-168.
[42] van Diepen L T A, Entwistle E M, Zak D R. Chronic nitrogen deposition and the composition of active arbuscular mycorrhizal fungi[J]. Applied Soil Ecology, 2013, 72: 62-68.
[43] van Diepen L T A, Lilleskov E A, Pregitzer K S. Simulated nitrogen deposition affects community structure of arbuscular mycorrhizal fungi in northern hardwood forests[J]. Molecular Ecology, 2011, 20(4): 799-811.
[44] Porras-Alfaro A, Herrera J, Natvig D O, et al. Effect of long-term nitrogen fertilization on mycorrhizal fungi associated with a dominant grass in a semiarid grassland[J]. Plant and Soil, 2007, 296(1-2): 65-75.
[45] Allison S D, Hanson C A, Treseder K K. Nitrogen fertilization reduces diversity and alters community structure of active fungi in boreal ecosystems[J]. Soil Biology and Biochemistry, 2007, 39(8): 1878-1887.
[46] Blackwood C B, Waldrop M P, Zak D R, et al. Molecular analysis of fungal communities and laccase genes in decomposing litter reveals differences among forest types but no impact of nitrogen deposition[J]. Environmental Microbiology, 2007, 9(5):1306-1316.
[47] Zak D R, Holmes W E, Burton A J, et al. Simulated atmospheric NO-3 deposition in crease soil organic matter by showing decomposition[J]. Ecological Application, 2008, 18(8):2016-2027.
[48] Entwistle E M, Zak D R, Edwards I P. Long-term experimental nitrogen deposition alters the composition of the active fungal community in the forest floor[J]. Soil Science Society of America Journal, 2013, 77(5): 1648-1658.
[49] Ramirez K S, Lauber C L, Knight R, et al. Consistent effects of nitrogen fertilization on soil bacterial communities in contrasting systems[J]. Ecology, 2010, 91(12): 3463-3470.
[50] Fierer N, Lauber C L, Ramirez K S, et al. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients[J]. The ISME Journal, 2011, 6(5): 1007-1017.
[51] Campbell B J, Polson S W, Hanson T E, et al. The effect of nutrient deposition on bacterial communities in Arctic tundra soil[J]. Environmental Microbiology, 2010, 12(7): 1842-1854.
[52] Zechmeister-Boltenstern S, Michel K, Pfeffer M. Soil microbial community structure in European forests in relation to forest type and atmospheric nitrogen deposition[J]. Plant and Soil, 2011, 343(1-2): 37-50.
[53] Blako R, H?gberg P, Bach L H, et al. Relations among soil microbial community composition, nitrogen turnover, and tree growth in N-loaded and previously N-loaded boreal spruce forest[J]. Forest Ecology and Management, 2013, 302: 319-328.
[54] Grogan D W, Cronan J E. Cyclopropane ring formation in membrane lipids of bacteria[J]. Microbiology and Molecular Biology Reviews, 1997, 61(4): 429-441.
[55] 吕超群, 田汉勤, 黄耀. 陆地生态系统氮沉降增加的生态效应[J]. 植物生态学报, 2007, 31(2): 205-218.Lu C Q, Tian H Q, Huan Y. Ecological effects of increased nitrogen deposition interrestrial ecosystems[J]. Journal of Plant Ecology, 2007, 31(2): 205-218.
[56] Eisenlord S D,Zak D R.Simulated atmospheric nitrogen deposition alters actinobacterial community composition in forest soils[J].Soil Science Society of America Journal, 2010, 74(4): 1157-1166.
[57] Nemergut D R, Townsend A R, Sattin S R, et al. The effects of chronic nitrogen fertilization on alpine tundra soil microbial communities: implications for carbon and nitrogen cycling[J]. Environmental Microbiology, 2008, 10(11): 3093-3105.
[58] Freedman Z, Eisenlord S D, Zak D R, et al. Towards a molecular understanding of N cycling in northern hardwood forests under future rates of N deposition[J]. Soil Biology and Biochemistry, 2013, 66: 130-138.
[59] 黄玉梓, 樊后保, 李燕燕, 等. 氮沉降对杉木人工林生长及林下植被碳库的影响[J]. 生态环境学报, 2009(4): 1407-1412. Huang Y Z, Fan H B, Li Y Y. et al. Effects of nitrogen deposition on tree growth and understory carbon pools in Chinese fir plantation[J]. Ecology and Environmental Sciences, 2009(4): 1407-1412.
[60] 张徐源, 闫文德, 马秀红, 等. 模拟氮沉降对樟树人工林土壤呼吸的短期效应[J]. 中南林业科技大学学报, 2012, 32(3): 109-113. Zhang X Y, Yan W D, Ma X H, et al. Short-term effects of nitrogen deposition on soil respiration of Cinnamomum camphora plantation[J]. Journal of Central South University of Forestry & Technology, 2012, 32(3): 109-113.
[61] 涂利华, 戴洪忠, 胡庭兴等. 模拟氮沉降对华西雨屏区撑绿杂交竹林土壤呼吸的影响[J]. 应用生态学报, 2011, 22(4): 829-836. Tu L H, Dai H Z, Hu T X,et al.Effects of simulated nitrogen deposition on soil respiration in a Bambusa pervariabilis×Dendrocala mopsi plantation in rainy area of west China[J]. Chinese Journal of Applied Ecology, 2011, 22(4): 829-836.
[62] 刘盛梅, 姜清成, 李芸. 华西雨屏区巨桉中龄林土壤呼吸对模拟氮沉降的响应[J]. 四川林业科技, 2010, 31(3):60-64. Liu S M, Jiang Q C, Li Y. Response of soil respiration to simulated nitrogen deposition under the middle-aged eucalyptus grandis plantation in Ya’an city[J]. Journal of Sichuan Forestry Science and Technology, 2010, 31(3): 60-64.
[63] 井艳丽, 袁凤辉. 氮沉降对土壤呼吸影响研究进展[J]. 世界林业研究, 2013, 26(4): 25-31. Jing Y L, Yuan F H. Research advances on responses of soil respiration to nitrogen deposition[J]. World Forestry Research, 2013, 26(4): 25-31.
[64] Hasselquist N J, Metcalfe D B, H?gberg P. Contrasting effects of low and high nitrogen additions on soil CO2 flux components and ectomycorrhizal fungal sporocarp production in a boreal forest[J]. Global Change Biology, 2012, 18(12): 3596-3605.
[65] 张晶, 张惠文, 李新宇, 等. 土壤微生物生态过程与微生物功能基因多样性[J]. 应用生态学报, 2006, 17(6):1129-1132. Zhang J, Zhang H W, Li X Y, et al. Soil microbial ecological process and microbial functional gene diversity[J].Chinese Journal of Applied Ecology, 2006, 17(6): 1129-1132.
[66] Edwards I P, Zak D R, Kellner H, et al. Simulated atmospheric N deposition alters fungal community composition and suppresses ligninolytic gene expression in a northern hardwood forest[J]. PLoS One, 2011, 6(6): e20421.
[67] Waldrop M P, Zak D R, Sinsabaugh R L, et al. Nitrogen deposition modifies soil carbon storage through changes in microbial enzymatic activity[J]. Ecological Applications, 2004, 14(4): 1172-1177.
[68] Hu Y L, Jung K, Zeng D H, et al. Nitrogen-and sulfur-deposition altered soil microbial community functions and enzyme activities in a boreal mixedwood forest in western Canada[J]. Canadian Journal of Forest Research, 2013, 43(9): 777-784.
[69] 袁颖红, 樊后保, 刘文飞, 等. 模拟氮沉降对杉木人工林(Cunninghamia lanceolata)土壤酶活性及微生物群落功能多样性的影响[J]. 土壤, 2013,45(1): 120-128. Yan Y H, Fan H B, Liu W F.et al. Effects of simulated nitrogen deposition on soil enzyme activities and microbial community functional diversities in a Chinese fir plantation[J]. Soils, 2013,45(1): 120-128.
[70] 刘蔚秋, 刘滨扬, 王江, 等. 不同环境条件下土壤微生物对模拟大气氮沉降的响应[J]. 生态学报, 2010,30(7): 1691-1698.Liu W Q, Liu B Y, Wang J,et al. Responses of soil microbial communities to moss cover and nitrogen addition[J]. Acta Ecologica Sinica, 2010,30(7): 1691-1698.
[71] Zhou X B, Zhang Y M, Downing A. Non-linear response of microbial activity across a gradient of nitrogen addition to a soil from the Gurbantunggut Desert, northwestern China[J]. Soil Biology and Biochemistry, 2012, 47: 67-77.
[72] Weand M P, Arthur M A, Lovett G M, et al. Effects of tree species and N additions on forest floor microbial communities and extracellular enzyme activities[J]. Soil Biology and Biochemistry, 2010, 42(12): 2161-2173.
[73] Rossi S, Bordeleau A, Morin H, et al. The effects of N-enriched rain and warmer soil on the ectomycorrhizae of black spruce remain inconclusive in the short term[J]. Annals of Forest Science, 2013, 70(8): 825-834.
[74] Aber J D, Magill A H. Chronic nitrogen additions at the Harvard Forest(USA): the first 15 years of a nitrogen saturation experiment[J]. Forest Ecology and Management, 2004, 196(1): 1-5.

基金

收稿日期:2014-08-27 修回日期:2014-12-12
基金项目:国家重点基础研究发展计划(2012CB416904); 江苏高校优势学科建设工程资助项目(PAPD)
第一作者:赵超,硕士生。*通信作者:阮宏华,教授。E-mail: hhuan@njfu.edu.cn。
引文格式:赵超,彭赛,阮宏华,等. 氮沉降对土壤微生物影响的研究进展[J]. 南京林业大学学报:自然科学版,2015,39(3):149-155.

PDF(1512856 KB)

Accesses

Citation

Detail

段落导航
相关文章

/