重组竹是由原竹经一定生产工艺制作得到的一种高强竹质复合材料,研究重组竹材料的纵向单轴本构关系,是建立此类材料本构关系进行重组竹基本构件非弹性分析的基础。笔者在将重组竹理想化为横向各向同性材料的基础上,研究了重组竹材料纵向受拉与受压破坏形态,建立了重组竹材料纵向应力-应变关系解析公式。结果表明:重组竹受拉破坏缘于纵向纤维被拉断,呈脆性断裂破坏形态; 受压破坏缘于破坏面附近纵向纤维压屈,破坏分纵向屈曲破坏、压剪破坏和纵向劈裂破坏3种形态; 重组竹的受拉应力-应变曲线呈线性关系; 当压应力小于比例极限时,受压应力-应变关系为直线,当压应力超过比例极限后,应力-应变关系呈非线性强化特征,非线性段的应力可以表达为应变的二次函数。
						
						
						
						
						
							
Abstract
						
						
							Parallel strand bamboo(PSB)fabricated through industrial process using raw bamboo is a high strength bamboo-based composite, and it has extensively potential prospective use as a structural material for building construction. To study the longitudinal stress-strain relationships of this material is a fundamental work to build the constitutive relation of PSB and to conduct the inelastic analysis for PSB structural members. For this reason, this paper investigated the failure mode of tension and compression of PSB in longitudinal direction firstly by test, and then the damage mechanisms of this material were studied. Finally, the analytical stress-strain formula of PSB composite was suggested. The results showed that parallel-to-grain tensile failure of PSB composite was due to the breaking of longitudinal fibers and shown brittle characteristics. The compressive failure was contributed to the bulking of the fibers near the damage area, which has 3 types of failure modes including, longitudinal bulking failure, compressive-shearing failure, and slip failure in longitudinal direction. The stress-strain relationship in longitudinal direction of PSB composite exhibits linear behavior in tension; and in compression. It remains in linear form within the proportional limit, and it can also be simulated by quadratic polynomial, even the stress exceeds the limit.
						
						
					
					
					
					
					
					
					
					
					
					 
					
					
					
					
					
					
					
					
						
						
						
							
								
									
{{custom_sec.title}}
								
								
									
{{custom_sec.title}}
								
								
								
								{{custom_sec.content}}
							
						 
						
						
						
						
						
						
						
							
参考文献
						
						
							[1] Huang D S, Zhou A P, Bian Y L. Experimental and analytical study on the nonlinear bending of parallel strand bamboo beams [J]. Construction and Building Materials, 2013, 44: 585-592.
[2] Xiao Y, Ma J. Fire simulation test and analysis of laminated bamboo frame building [J]. Construction and Building Materials, 2012, 34: 257-266.
[3] 肖岩, 佘立永, 单波. 装配式竹结构房屋的设计与研究[J]. 工业建筑, 2009, 39(1): 56-59.
Xiao Y, She L Y, Shan B. Research and design of prefabricated bamboo house [J]. Industrial Construction, 2009, 39(1): 56-59.
[4] 陈国, 肖岩, 单波, 等. 现代竹结构住宅设计及工程应用[J]. 工业建筑, 2011, 41(4): 66-70.
Chen G, Xiao Y, Shan B, et al. Design and engineering application of modern bamboo single house [J]. Industrial Construction, 2011, 41(4): 66-70.
[5] 陈国, 单波, 肖岩. 轻型竹结构房屋抗震性能的试验研究[J]. 振动与冲击, 2011, 30(10): 136-142.
Chen G, Shan B, Xiao Y. Aseismic performance tests for a light glulam house [J]. Journal of Vibration and Shock, 2011, 30(10): 136-142.
[6] Li Y S, Sheng H Y, Shan W, et al. Flexural behavior of lightweight bamboo-steel composite slabs [J]. Thin Wall Structures, 2012, 53: 83-90.
[7] Zhou A P, Huang D S, Li H T, et al. Hybrid approach to determine the mechanical properties of fibers and matrixes of bamboo [J]. Construction and Building Materials, 2012, 35: 191-196.
[8] 魏洋, 张齐生, 蒋身学, 等. 现代竹质工程材料的基本性能及其在建筑结构中的应用前景[J]. 建筑技术, 2011, 42(5): 390-393.
Wei Y, Zhang Q S, Jiang S X, et al. Basic properties and prospects of modern bamboo engineering materials applied in building structures [J]. Architecture Technology, 2011, 42(5):390-393.
[9] Tommy Y L, Cui H Z, Tang P W C, et al. Strength analysis of bamboo by microscopic investigation of bamboo fiber [J]. Construction and Building Materials, 2008, 22: 1532-1535.
[10] Au F, Ginsburg K M, Poon Y M, et al. Report on study of bamboo as a construction material [R]. HongKong: The Hong Kong Polytechnic, 1978.
[11] Tommy Y Lo, Cui H Z, Leung H C. The effect of fiber density on strength capacity of bamboo[J]. Materials Letters, 2004, 58: 2595-2598.
[12] Chung K F, Yu W K. Mechanical properties of structural bamboo for bamboo scaffoldings[J]. Engineering Structures, 2002, 24: 429-442.
[13] 吕清芳, 魏洋, 张齐生, 等. 新型竹质工程材料抗震房屋基本构件力学性能试验研究[J]. 建材技术与应用, 2008(11):1-5.
Lu Q F, Wei Y, Zhang Q S, et al. Experimental study on mechanical properties of basic components for a new anti-seismic room with bamboo engineering materials [J]. Research & Application of Building Materials, 2011(11): 1-5.
[14] 魏洋, 蒋身学, 吕清芳, 等. 新型竹梁抗弯性能试验研究[J]. 建筑结构, 2010, 40(1): 88-91.
Wei Y, Jiang S X, Lu Q F, et al. Experimental study on flexural performance of bamboo beams [J]. Building Structure, 2010, 40(1): 88-91.
[15] 张齐生, 孙丰文. 我国木材工业的发展展望[J].林产工业, 1999, 26(4): 3-5.
Zhang Q S, Sun F W. The development and prospect of bamboo industry in China [J]. China Forest Products Industry, 1999, 26(4): 3-5.
[16] 张宏健, 李君, 叶喜. 竹条重组竹生产工艺的研究开发[J]. 建筑人造板, 1998(3):24-26.
Zhang H J, Li J, Ye X. Research on the fabricated technique of reformed bamboo [J]. Building Artificial Boards, 1998(3):24-26. 
[17] 李琴, 汪奎宏. 重组竹生产工艺的初步研究[J]. 人造板通讯, 2001(7): 6-9.
Li Q, Wang K H. Research on the manufacture process of reformed bamboo [J]. China Wood-based Panels, 2001(7): 6-9.
[18] 叶良明, 姜志宏, 叶建华. 重组竹板材的研究[J]. 浙江林学院学报, 1991, 8(2):133-140.
Ye L M, Jiang Z H, Ye J H. Study on the laminated bamboo panel [J]. Journal of Zhejiang A&F University, 1991, 8(2):133-140.
						
						
						
						
						
						
						
						
						
						
						
						
							
								
基金
							
							
								收稿日期:2014-03-05 修回日期:2015-06-02
基金项目:国家自然科学基金项目(51378263); 江苏省自然科学基金项目(BK2012820); 江苏高校优势学科建设工程资助项目(PAPD)
 
第一作者:盛宝璐,博士生。*通信作者:周爱萍,副教授,博士。E-mail: aping2007@163.com。
引文格式:盛宝璐,周爱萍,黄东升,等. 重组竹的顺纹拉压强度与本构关系[J]. 南京林业大学学报:自然科学版,2015,39(5):123-128.