南京林业大学学报(自然科学版) ›› 2015, Vol. 39 ›› Issue (06): 81-86.doi: 10.3969/j.issn.1000-2006.2015.06.015
涂宏涛1,万 杰2,孙玉军1*,梅光义1,刘素真1
出版日期:
2015-11-30
发布日期:
2015-11-30
基金资助:
TU Hongtao1, WAN Jie2, SUN Yujun1*, MEI Guangyi1, LIU Suzhen1
Online:
2015-11-30
Published:
2015-11-30
摘要: 以福建省杉木人工林为研究对象,通过固定样地法对不同林龄杉木人工林根系生物量分层调查,探究不同林龄杉木林不同土层根各组分(根兜、粗根、中根、小根、细根)生物量所占全根的比例及随着林龄的变化规律。以R软件构建根各组分最优生物量模型,并通过总量和分量两级联合控制法来建立根各组分相容性模型。结果表明:杉木林根系生物量随林龄的增大而增加,不同根系组分生物量的大小排序为根兜>粗根>中根>小根>细根,其中根兜和粗根占根系生物量的 80% 以上,人工林粗根和中根主要分布在20~80 cm土层中。利用R软件构建的非线性相容性模型能较全面、客观地反映根各组分之间生物量的分配关系(R2>0.77,P>84.7,e<0.153),同时解决根各组分模型之间的不相容,提高模型的精度。
中图分类号:
涂宏涛,万杰,孙玉军,等. 不同林龄杉木人工林根生物量及其相容性模型[J]. 南京林业大学学报(自然科学版), 2015, 39(06): 81-86.
TU Hongtao, WAN Jie, SUN Yujun, MEI Guangyi, LIU Suzhen. Root biomass of the Chinese fir at different ages and its compatible models [J].Journal of Nanjing Forestry University (Natural Science Edition), 2015, 39(06): 81-86.DOI: 10.3969/j.issn.1000-2006.2015.06.015.
[1] Vogt K A, Vogt D J, Palmiotto P A, et al. Review of root dynamics in forest ecosystems grouped by climate,climatic forest type and species[J].Plant and Soil,1995,187(2):159-219.
[2] Hendrick R L,Pregitzer K S.Spatial variation in tree root distribution and growth associated with minirhizotrons[J].Plant and Soil,1992,143(2):283-288. [3] Gordon W S,Jackson R B.Nutrient concentrations in fine roots[J].Ecology,2000,81(1):275-280. [4] 刘波,余艳峰,张贇齐,等.亚热带常绿阔叶林不同林龄细根生物量及其养分[J]. 南京林业大学学报:自然科学版,2008,32(5):81-84. Liu B, Yu Y F, Zhang Y Q, et al. Fine-root biomass and related nutrients in different aged stands of subtropical evergreen broad-leaved forest[J]. Journal of Nanjing Forestry University: Natural Sciences Edition,2008,32(5):81-84. [5] 孙志虎,牟长城,孙龙,等.采用地统计学方法对落叶松人工纯林表层细根生物量的估计[J].植物生态学报,2006, 30(5):771-779. Sun Z H, Mu C C, Sun L, et al. The estimate of fine root biomass in upper soil layer of Larix olgensis plantation by geostatistics method[J]. Journal of Plant Ecology,2006,30(5):771-779. [6] Nadelhoffer K J,Raich J W.Fine root production estimates and belowground carbon allocation in forest ecosystems[J].Ecology,1992,73(4):1139-1147. [7] Persson H. Root dynamics in a young Scots pine stand in central Sweden[J]. Oikos, 1978, 30(3):508-519. [8] Rytter R M. Biomass production and allocation, including fine-root turnover, and annual N uptake in plysimeter grown basket willows[J]. Forest Ecology and Management, 2001,140(2): 177-192. [9] 方晰,田大伦,项文化.速生阶段杉木人工林碳素密度、贮量和分布[J].林业科学,2002,38(3):14-19. Fang X,Tian D L,Xiang W H. Density,storage and distribution of carbon in chinese fir plantation at fast growing stage[J].Scientia Silvae Sinicae, 2002,38(3):14-19. [10] 王效科,冯宗炜,欧阳志云.中国森林生态系统的植物碳储量和碳密度研究[J].应用生态学报,2001,12(l):13-16. Wang X K,Feng Z W,Ouyang Z Y. Vegetation carbon storage and density of forest ecosystems in China[J].Chinese Journal of Applied Ecology,2001,12(l):13-16. [11] 秦武明,何斌,余浩光,等.马占相思人工林不同年龄阶段的生物生产力[J].东北林业大学学报, 2007, 35(1): 22-24. Qin W M,He B,Yu H G,et al. Biomass productivity of acacia mangium plantations of different age classes[J].Journal of Northeast Forestry University, 2007, 35(1): 22-24. [12] 孙玉军,张俊,韩爱惠,等.兴安落叶松(Larix gmelini)幼中龄林的生物量与碳汇功能[J].生态学报, 2007, 27(5): 1756-1762. Sun Y J,Zhang J,Han A H,et al. Biomass and carbon pool of Larix gmelini young and middle age forest in Xing'an Mountains Inner Mongolia[J]. Acta Ecologica Sinica, 2007, 27(5): 1756-1762. [13] 黄宇,冯宗炜,汪思龙,等.杉木、火力楠纯林及其混交林生态系统C、N贮量[J].生态学报,2005, 25(12): 3146-3154. Huang Y,Feng Z W,Wang S L, et al. C and N stocks under three plantation forest ecosystems of Chinese fir,Michelia macclurei and their mixture[J]. Acta Ecologica Sinica, 2005, 25(12):3146-3154. [14] 巨文珍,王新杰,孙玉军.长白落叶松林龄序列上的生物量及碳储量分配规律[J].生态学报,2011,31(4):1139-1148. Ju W Z,Wang X J,Sun Y J. Age structure effects on stand biomass and carbon storage distribution of Larix olgensis plantation[J]. Acta Ecologica Sinica,2011,31(4):1139-1148. [15] 王良桂,朱强根,张焕朝,等.苏北杨树人工林细根生产力与周转[J].南京林业大学学报:自然科学版,2008,32(5):76-80. Wang L G, Zhu Q G, Zhang H C, et al. Annual production and turnover rate of fine roots in poplar plantations in north of Jiangsu[J].Journal of Nanjing Forestry University: Natural Sciences Edition,2008,32(5):76-80. [16] Chojnacky D C. Allometric scaling theory applied to FIA biomass estimation[C]//Proceedings of the third annual forest in ventory and analysis symposium. Gen Tech Rep NC,230, 2002: 96-102. [17] Parresol B R. Additivity of nonlinear biomass equations[J]. Canadian Journal of Forest Research, 2001, 31(5): 865-878. [18] Bi H, Turner J, Lambert M J. Additive biomass equations for native eucalypt forest trees of temperate Australia[J]. Trees, 2004, 18(4): 467-479. [19] 马炜,孙玉军,郭孝玉,等.不同林龄长白落叶松人工林碳储量[J].生态学报,2010,30(17):4659-4667. Ma W, Sun Y J, Guo X Y, et al. Carbon storage of Larix olgensis plantation at different stand ages[J]. Acta Ecologica Sinica,2010,30(17):4659-4667. [20] 曾伟生, 夏忠胜, 朱松, 等. 贵州人工杉木相容性立木材积和地上生物量方程的建立[J]. 北京林业大学学报, 2011, 33(4):1-6. Zeng W S,Xia Z S,Zhu S, et al.Compatible tree volume and above-ground biomass equations for Chinese fir plantations in Gui zhou[J].Journal of Beijing Forestry University, 2011,33(4):1-6. [21] 蔡兆炜, 孙玉军,施鹏程. 基于非线性度量误差的杉木相容性生物量模型[J]. 东北林业大学学报, 2014, 42(9):28-32. Cai Z W, Sun Y J, Shi P C. Compatible tree biomass models for Chinese fir plantations based on nonlinear measurement error[J]. Journal of Northeast Forestry University,2014,42(9): 28-32. [22] 程堂仁, 冯菁,马钦彦, 等. 小陇山油松林乔木层生物量相容性线性模型[J]. 生态学杂志, 2008, 27(3):317-322. Cheng T R,Feng J,Ma Q Y, et al. Linear compatible models of tree layer biomass of Pinus tabulaeform plantation at different stand ages[J]. Acta Ecologica Sinica,2010,30(17):4659-4667. [20] 曾伟生, 夏忠胜, 朱松, 等. 贵州人工杉木相容性立木材积和地上生物量方程的建立[J]. 北京林业大学学报, 2011, 33(4):1-6. Zeng W S,Xia Z S,Zhu S, et al.Compatible tree volume and above-ground biomass equations for Chinese fir plantations in Gui zhou[J].Journal of Beijing Forestry University, 2011,33(4):1-6. [21] 蔡兆炜, 孙玉军,施鹏程. 基于非线性度量误差的杉木相容性生物量模型[J]. 东北林业大学学报, 2014, 42(9):28-32. Cai Z W, Sun Y J, Shi P C. Compatible tree biomass models for Chinese fir plantations based on nonlinear measurement error[J]. Journal of Northeast Forestry University,2014,42(9): 28-32. [22] 程堂仁, 冯菁,马钦彦, 等. 小陇山油松林乔木层生物量相容性线性模型[J]. 生态学杂志, 2008, 27(3):317-322. Cheng T R,Feng J,Ma Q Y, et al. Linear compatible models of tree layer biomass of plantations in Xiaolong Mountains[J].Chinese Journal of Ecology, 2008,27(3): 317-322. |
[1] | 丛明珠, 刘琪璟, 孙震, 董淳超, 钱尼澎. 长白山北坡植物群落β多样性及其组分驱动因素分析[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 99-106. |
[2] | 曹荔荔, 阮宏华, 李媛媛, 倪娟平, 王国兵, 曹国华, 沈彩芹, 徐亚明. 不同林龄水杉人工林地表大型土壤动物群落特征比较研究[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 91-98. |
[3] | 张怡婷, 夏念和, 林树燕, 丁雨龙. 我国寒竹属空间分布特征及影响因素[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 107-114. |
[4] | 胡衍平, 刘卫东, 张珉, 陈明皋, 程勇, 魏志恒, 庞文胜, 吴际友. 山乌桕家系叶片叶色参数和色素含量及其解剖结构研究[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 123-133. |
[5] | 王一洁, 王璐冕, 丁真慧, 钱程, 曹加杰. 城市滨水绿地空间夏季微气候效应研究[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 233-241. |
[6] | 赵国扬, 洪波, 高俊平, 赵鑫, 黄洪峰, 徐彦杰. 菊属新品种‘雀欢’[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 254-255. |
[7] | 任佳辉, 高捍东, 陈哲楠, 李浩, 刘强, 陈澎军. 杂交新美柳苗对盐涝胁迫的生长和生理响应[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 57-66. |
[8] | 董亚文, 陈双林, 谢燕燕, 郭子武, 张景润, 汪舍平, 徐勇敢. 林下植被演替过程中毛竹和主要优势树种叶片建成成本变化特征[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 179-186. |
[9] | 徐薪璐, 孔淑鑫, 吕卓, 江帅君, 赵婉琪, 林树燕. 靓竹叶色表型叶片形态、结构与光合特性相关性研究[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 145-154. |
[10] | 曹永慧, 陈庆标, 周本智, 葛晓改, 王小明. 不同截雨干旱时间对毛竹叶片氮含量时空分布的影响[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 155-161. |
[11] | 隋夕然, 李军, 陈娟, 华军, 沈谦, 杨洪胜, 何前程, 李由, 王伟, 彭冶, 葛之葳, 张增信. 徐州市侧柏人工林群落不同演替阶段物种多样性变化[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 171-178. |
[12] | 尹华康, 张晋东, 黄金燕, 蒲冠桦, 毛泽恩, 周材权, 黄耀华, 付励强. 四川马边大风顶自然保护区大熊猫主食竹空间分布特征[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 187-193. |
[13] | 孔凡斌, 金晨涛, 徐彩瑶. 罗霄山地区生态系统服务与居民福祉耦合协调关系变化及其影响因素[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 245-254. |
[14] | 龚霞, 吴银明, 王海峰, 曾攀, 唐亚, 温铿, 焦文献. 花椒新品种‘蜀椒1号’[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 265-266. |
[15] | 吴桐, 王贤荣, 伊贤贵, 周华近, 陈洁, 李蒙, 陈祥珍, 高书成. 樱花新品种‘胭脂雪’[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 267-268. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||