南京林业大学学报(自然科学版) ›› 2016, Vol. 40 ›› Issue (01): 1-7.doi: 10.3969/j.issn.1000-2006.2016.01.001
彭 赛,张雅坤,葛之葳,阮宏华*
出版日期:
2016-02-18
发布日期:
2016-02-18
基金资助:
PENG Sai, ZHANG Yakun, GE Zhiwei, RUAN Honghua*
Online:
2016-02-18
Published:
2016-02-18
摘要: 森林生态系统凋落物被微生物分解的过程影响整个土壤碳库的碳来源及稳定性,在氮沉降全球化的趋势下因试验树种、试验方法、试验时间等不同因素导致森林地上凋落物分解产生了促进、抑制和无影响等3种响应。氮沉降对凋落物分解的影响主要通过3种机制实现:①不同浓度的氮沉降对凋落物中纤维素和木质素分解的影响不一致,原因可能是外加低浓度氮时,与之相关的真菌和细菌的生物量、活性会升高,高氮时则反之; 也有部分研究表明氮沉降一般促进含木质素少抑制含木质素较多的凋落物的分解; ②氮沉降对微生物产生的胞外酶活性影响也不一致,所以微生物酶对凋落物分解速率影响不同; ③通过对微生物的生物量、多样性、群落组成以及生态化学计量比等的影响,氮沉降也会影响凋落物分解木质素、纤维素等化学物质的过程。
中图分类号:
彭赛,张雅坤,葛之葳,等. 氮沉降对微生物分解森林地上凋落物过程的影响[J]. 南京林业大学学报(自然科学版), 2016, 40(01): 1-7.
PENG Sai, ZHANG Yakun, GE Zhiwei, RUAN Honghua. Effects of nitrogen deposition on litter decomposition by microorganisms in forests[J].Journal of Nanjing Forestry University (Natural Science Edition), 2016, 40(01): 1-7.DOI: 10.3969/j.issn.1000-2006.2016.01.001.
[1] 金峰, 杨浩. 土壤有机碳储量及影响因素研究进展[J]. 土壤, 2000, 32(1): 11-17.
Jin F, Yang H. A review: soil organic carbon storage and its influenced factors[J]. Soils, 2000, 32(1): 11-17.
[2] Sedjo R A. The carbon cycle and global forest ecosystem[J]. Water, air, and soil pollution, 1993, 70(1-4): 295-307. [3] Sundquist E T. The global carbon dioxide budget[J]. Science, 1993, 259(5097): 934-934. [4] 郭剑芬, 杨玉盛, 陈光水, 等. 森林凋落物分解研究进展[J]. 林业科学, 2006, 42(4):93-100. Guo J F, Yang Y S, Chen G S, et al. A review on litter decomposition in forest ecosystem[J]. Scientia silvae sinicae, 2006, 42(4):93-100. [5] Cornwell W K, Cornelissen J H C, Amatangelo K,et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide[J]. Ecology letters, 2008, 11(10): 1065-1071. [6] Brovkin V, Van Bodegom P M, Kleinen T,et al. Plant-driven variation in decomposition rates improves projections of global litter stock distribution[J]. Biogeosciences, 2012, 9(1): 565-576. [7] Clemmensen K E, Bahr A, Ovaskainen O,et al. Roots and associated fungi drive long-term carbon sequestration in boreal forest[J]. Science, 2013, 339(6127): 1615-1618. [8] Manzoni S, Trofymow J A, Jackson R B, et al. Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter[J]. Ecological monographs, 2010, 80(1): 89-106. [9] Craine J M, Morrow C, Fierer N. Microbial nitrogen limitation increases decomposition[J]. Ecology, 2007, 88(8): 2105-2113. [10] Luan J, Liu S, Zhu X,et al. Soil carbon stocks and fluxes in a warm-temperate oak chronosequence in China[J]. Plant and soil, 2011, 347(1-2): 243-253. [11] Talbot J M, Treseder K K. Interactions among lignin, cellulose, and nitrogen drive litter chemistry-decay relationships[J]. Ecology, 2012, 93(2): 345-354. [12] 卢广超, 邵怡若, 薛立. 氮沉降对凋落物分解的影响研究进展[J]. 世界林业研究, 2014,27(1):35-42. Lu G C, Shao Y R, Xue L. Research progress in the effect of nitrogen deposition on litter decomposition[J]. World forestry research, 2014, 27(1):35-42. [13] Singh G, Kumar D, Marwaha T S,et al. Conservation tillage and integrated nitrogen management stimulates soil microbial properties under varying water regimes in maize-wheat cropping system in northern India[J]. Archives of agronomy and soil science, 2011, 57(5): 507-521. [14] Vivanco L, Austin A T. Nitrogen addition stimulates forest litter decomposition and disrupts species interactions in Patagonia, Argentina[J]. Global change biology, 2011, 17(5): 1963-1974. [15] Tian X F, Hu H W, Ding Q,et al. Influence of nitrogen fertilization on soil ammonia oxidizer and denitrifier abundance, microbial biomass, and enzyme activities in an alpine meadow[J]. Biology and fertility of soils, 2014, 50(4): 703-713. [16] 韩雪, 王春梅, 蔺照兰. 模拟氮沉降对温带森林凋落物分解的影响[J]. 生态环境学报, 2014, 23(9): 1503-1508. Han X, Wang C M, Lin Z L. Effects of simulated nitrogen deposition on temperate forest litter decomposition[J]. Ecology and environmental sciences, 2014, 23(9): 1503-1508. [17] Fang X, Liu J X, Zhang D Q,et al. Effects of precipitation change and nitrogen addition on organic carbon mineralization and soil microbial carbon of the forest soils in Dinghushan, southeastern China[J]. Chin J appl environ biol, 2012, 18(4): 531-538. [18] Kuperman R G. Litter decomposition and nutrient dynamics in oak-hickory forests along a historic gradient of nitrogen and sulfur deposition[J]. Soil biology and biochemistry, 1999, 31(2): 237-244. [19] 严海元, 辜夕容, 申鸿. 森林凋落物的微生物分解[J]. 生态学杂志, 2010,29(9): 1827-1835. Yan H Y, Gu X R, Shen H. Microbial decomposition of forest litter: A review[J]. Chinese journal of ecology, 2010, 29(9): 1827-1835. [20] tursová M, ifCˇáková L, Leigh M B,et al. Cellulose utilization in forest litter and soil: identification of bacterial and fungal decomposers[J]. FEMS microbiology ecology, 2012, 80(3): 735-746. [21] Thevenot M, Dignac M F, Rumpel C. Fate of lignins in soils: a review[J]. Soil biology and biochemistry, 2010, 42(8): 1200-1211. [22] Waksman S A, Starkey R L. Influence of organic matter upon the development of fungi, actinomycetes and bacteria in the soil[J]. Soil science, 1924,17(5):373-378. [23] Kirk T K, Farrell R L. Enzymatic" combustion": the microbial degradation of lignin[J]. Annual reviewof microbiology, 1987, 41(1): 465-505. [24] Gulis V, Suberkropp K. Effect of inorganic nutrients on relative contributions of fungi and bacteria to carbon flow from submerged decomposing leaf litter[J]. Microbial ecology, 2003, 45(1): 11-19. [25] 董爱荣, 吕国忠, 吴庆禹,等. 小兴安岭凉水自然保护区森林土壤真菌的多样性[J]. 东北林业大学学报, 2004, 32(1): 8-10. Dong A R, Lv G Z, Wu Q Y, et al. Diversity of soil fungi in Liangshui Natural Reserve, Xiaoxing'anling forest region[J].Journal of Northeast Forestry University, 2004, 32(1): 8-10. [26] Duboc O, Dignac M F, Djukic I,et al. Lignin decomposition along an Alpine elevation gradient in relation to physicochemical and soil microbial parameters[J]. Global change biology, 2014,20(7):2272-2285. [27] Hobbie S E. Nitrogen effects on decomposition: a five-year experiment in eight temperate sites[J]. Ecology, 2008, 89(9): 2633-2644. [28] Berg B, Staaf H. Decomposition rate and chemical changes of Scots pine needle litter II: influence of chemical composition[J]. Ecological bulletins, 1980(32): 373-390. [29] De Santo A V, De Marco A, Fierro A,et al. Factors regulating litter mass loss and lignin degradation in late decomposition stages[J]. Plant and soil, 2009, 318(1-2): 217-228. [30] Berg B, McClaugherty C. Plant litter: decomposition, humus formation, carbon sequestration[M]. Berlin:Springer-Verlag. 2003:225. [31] Knorr M, Frey S D, Curtis P S. Nitrogen additions and litter decomposition: a meta-analysis[J]. Ecology, 2005, 86(12): 3252-3257. [32] Fogk. The effect of added nitrogen on the rate of decomposition of organic matter[J]. Biological reviews, 1988, 63(3): 433-462. [33] DeForest J L, Zak D R, Pregitzer K S,et al. Atmospheric nitrate deposition and the microbial degradation of cellobiose and vanillin in a northern hardwood forest[J]. Soil biology and biochemistry, 2004, 36(6): 965-971. [34] Keeler B L, Hobbie S E, Kellogg L E. Effects of long-term nitrogen addition on microbial enzyme activity in eight forested and grassland sites: implications for litter and soil organic matter decomposition[J]. Ecosystems, 2009, 12(1): 1-15. [35] Frey S D, Knorr M, Parrent J L,et al. Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests[J]. Forest ecology and management, 2004, 196(1): 159-171. [36]Hobbie S E, Vitousek P M. Nutrient limitation of decomposition in Hawaiian forests[J]. Ecology, 2000, 81(7): 1867-1877. [37] Couteaux M M, Bottner P, Berg B. Litter decomposition, climate and liter quality[J]. Trends in ecology & evolution, 1995, 10(2): 63-66. [38] Craine J M, Morrow C, Fierer N. Microbial nitrogen limitation increases decomposition[J]. Ecology, 2007, 88(8): 2105-2113. [39] Webster E A, Halpin C, Chudek J A,et al. Decomposition in soil of soluble, insoluble and lignin-rich fractions of plant material from tobacco with genetic modifications to lignin biosynthesis[J]. Soil biology and biochemistry, 2005, 37(4): 751-760. [40] Yanni S F, Whalen J K, Simpson M J,et al. Plant lignin and nitrogen contents control carbon dioxide production and nitrogen mineralization in soils incubated with Bt and non-Bt corn residues[J]. Soil biology and biochemistry, 2011, 43(1): 63-69. [41] 张东来, 毛子军, 张玲, 等. 森林凋落物分解过程中酶活性研究进展[J]. 林业科学, 2006, 42(1): 105-109. Zhang D L, Mao Z J, Zhang L,et al. Advances of enzyme activities in the process of litter decomposition[J].Scientia silvae sinicae, 2006, 42(1): 105-109. [42] 杨万勤, 王开运.森林土壤酶的研究进展[J].林业科学,2004,40(2):152-159. Yang W Q, Wang K Y. Advances in forest soil enzymology[J]. Scientia silvae sinicae, 2004, 40(2):152-159. [43] 王晖, 莫江明, 薛璟花, 等. 氮沉降增加对森林凋落物分解酶活性的影响[J]. 热带亚热带植物学报, 2007, 14(6): 539-545. Wang H, Mo J M, Xue J H, et al. Effects of elevated nitrogen deposition on the activities of enzymes in forest litter decomposition: a review[J].Journal of tropical and subtropical botany, 2007, 14(6): 539-545. [44] Fioretto A, Papa S, Curcio E, et al. Enzyme dynamics on decomposing leaf litter of Cistu sincanus and Myrtus communis in a Mediterranean ecosystem[J]. Soil biology and biochemistry, 2000, 32(13): 1847-1855. [45] 宋影, 辜夕容, 严海元, 等. 中亚热带马尾松林凋落物分解过程中的微生物与酶活性动态[J]. 环境科学, 2014, 35(3): 1151-1158. Song Y, Gu X R, Yan H Y, et al. Dynamics of microbes and enzyme activities during litter decomposition of Pinus massoniana forest in mid-subtropical Area[J]. Environmental science, 2014, 35(3): 1151-1158. [46] Carreiro M M, Sinsabaugh R L, Repert D A,et al. Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition[J]. Ecology, 2000, 81(9): 2359-2365. [47] Saiya-Cork K R, Sinsabaugh R L, Zak D R. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil[J]. Soil biology and biochemistry, 2002, 34(9): 1309-1315. [48] 杨喜田,宁国华,董惠英,等.太行山区不同植被群落土壤微生物学特征变化[J].应用生态学报,2006,17(9):1761-1764. Yang X T, Ning G H, Dong H Y, et al. Soil microbial characters under different vegetation communities in Taihang Mountain area[J]. Chinese journal of applied ecology,2006,17(9):1761-1764. [49] 王晶苑, 张心昱, 温学发, 等. 氮沉降对森林土壤有机质和凋落物分解的影响及其微生物学机制[J]. 生态学报, 2013, 33(5): 1337-1346. Wang J Y, Zhang X Y, Wen X F,et al. The effect of nitrogen deposition on forest soil organic matter and litter decompostion and the microbial mechanism[J]. Acta ecologica sinica, 2013, 33(5): 1337-1346. [50] Lilleskov E A, Fahey T J, Horton T R,et al. Belowground ectomycorrhizal fungal community change over a nitrogen deposition gradient in Alaska[J]. Ecology, 2002, 83(1): 104-115. [51] Smolander A, Kurka A, Kitunen V, et al. Microbial biomass C and N, and respiratory activity in soil of repeatedly limed and N-and P-fertilized Norway spruce stands[J]. Soil biology and biochemistry, 1994, 26(8): 957-962. [52] Nuccio E E, Hodge A, Pett-Ridge J,et al. An arbuscular mycorrhizal fungus modifies the soil microbial community and nitrogen cycling during litter decomposition[J]. Emironmental microbiology, 2012, 15(6):1870-1881. [53] Norris M D, Avis P G, Reich P B,et al. Positive feedbacks between decomposition and soil nitrogen availability along fertility gradients[J]. Plant and soil, 2013, 367(1-2): 347-361. [54] Hobbie S E, Eddy W C, Buyarski C R, et al. Response of decomposing litter and its microbial community to multiple forms of nitrogen enrichment[J]. Ecological monographs, 2012, 82(3): 389-405. [55] Li L J, Zeng D H, Yu Z Y,et al. Soil microbial properties under N and P additions in a semi-arid, sandy grassland[J]. Biology and fertility of soils, 2010, 46(6): 653-658. [56] 陈印平, 赵丽华, 吴越华, 等. 森林凋落物与土壤质量的互作效应研究[J]. 世界科技研究与发展, 2006, 27(4): 88-94. Chen Y P, Zhao L H, Wu Y H, et al. Interaction effect and mechanism between litter and soil quality[J].World sci-tech R & D, 2006, 27(4): 88-94. [57] Gadgil R L, Gadgil P D. Mycorrhiza and litter decomposition[J]. Nature, 1971, 233(5315):133. [58] Koide R T, Wu T. Ectomycorrhizas and retarded decomposition in a Pinus resinosa plantation[J]. New phytologist, 2003, 158(2): 401-407. [59] Lilleskov E A, Fahey T J, Lovett G M. Ectomycorrhizal fungal aboveground community change over an atmospheric nitrogen deposition gradient[J]. Ecological applications, 2001, 11(2): 397-410. [60] Eaton G K, Ayres M P. Plasticity and constraint in growth and protein mineralization of ectomycorrhizal fungi under simulated nitrogen deposition[J]. Mycologia, 2002, 94(6): 921-932. [61] Santos J C, Finlay R D, Tehler A. Molecular analysis of arbuscular mycorrhizal fungi colonising a semi-natural grassland along a fertilisation gradient[J]. New phytologist, 2006, 172(1): 159-168. [62] Van Diepen L T A, Entwistle E M, Zak D R. Chronic nitrogen deposition and the composition of active arbuscularmycorrhizal fungi[J]. Applied soil ecology, 2013, 72(5): 62-68. [63] 王绍强, 于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征[J]. 生态学报, 2008, 28(8):3937-3947. Wang S Q,Yu G R. Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements[J].Acta ecologica sinica, 2008, 28(8): 3937-3947. [64] Hessen D O, Ågren G I, Anderson T R, et al. Carbon sequestration in ecosystems: the role of stoichiometry[J]. Ecology, 2004, 85(5): 1179-1192. [65] Waring B G, Averill C, Hawkes C V. Differences in fungal and bacterial physiology alter soil carbon and nitrogen cycling: insights from meta-analysis and theoretical models[J]. Ecology letters, 2013, 16(7): 887-894. [66] Buchkowski R W, Schmitz O J, Bradford M A. Microbial stoichiometry overrides biomass as a regulator of soil carbon and nitrogen cycling[J]. Ecology, 2015, 96(4): 1139-1149. [67] Mooshammer M, Wanek W, Schnecker J, et al. Stoichiometric controls of nitrogen and phosphorus cycling in decomposing beech leaf litter[J]. Ecology, 2012, 93(4): 770-782. [68] 肖慈英, 黄青春, 阮宏华. 松, 栎纯林及混交林凋落物分解特性研究[J]. 土壤学报, 2002, 39(5):763-767. Xiao C Y, Huang Q C, Ruan H H. Characteristics of decomposition of litter from pine, oak and pine-oak mixed forests[J]. Acta pedologica sinica, 2002, 39(5):763-767. [69] Dale S E, Turner B L, Bardgett R D. Isolating the effects of precipitation, soil conditions, and litter quality on leaf litter decomposition in lowland tropical forests[J]. Plant and soil, 2015: 1-14. [70] 刘强, 彭少麟, 毕华, 等. 热带亚热带森林凋落物交互分解的养分动态[J]. 北京林业大学学报, 2005, 27(1): 24-32. Liu Q, Peng S L, Bi H, et al. Nutrient dynamics of foliar litter in reciprocal decomposition in tropical and subtropical forests[J]. Journal of Beijing Forestry University, 2005, 27(1): 24-32. [71] 范鹏程, 田静, 黄静美, 等. 花生壳中纤维素和木质素含量的测定方法[J]. 重庆科技学院学报(自然科学版), 2008, 10(5): 64-65+67. Fan P C, Tian J, Huang J M, et al. On the determination of cellulose and lignin of peanut shells[J]. Journal of Chongqing University of Science and Technology(natural science edition), 2008, 10(5): 64-65+67. [72] Goñi M A, Montgomery S. Alkaline Cu Ooxidation with a microwave digestion system: Lignin analyses of geochemical samples[J]. Analytical chemistry, 2000, 72(14): 3116-3121. [73] Gilli E, Schmied F, Diebald S, et al. Analysis of lignin precipitates on ozone treated kraft pulp by FTIR and AFM[J]. Cellulose, 2012, 19(1): 249-256. [74] 张红漫, 郑荣平, 陈敬文, 等. NREL法测定木质纤维素原料组分的含量[J]. 分析试验室, 2010, 29(11): 15-18. Zhang H M, Zheng R P, Chen J W, et al. Investigation on the determination of lignocellulosics components by NREL method[J]. Chinese journal of analysis laboratory, 2010, 29(11): 15-18. [75] Chiu C Y, Chen T H, Imberger K, et al. Particle size fractionation of fungal and bacterial biomass in subalpine grassland and forest soils[J]. Geoderma, 2006, 130(3): 265-271. [76] Liang C, Read H W, Balser T C. Reliability of muramic acid as a bacterial biomarker is influenced by methodological artifacts from streptomycin[J]. Microbial ecology, 2009, 57(3): 494-500. [77] Hermansson A, Bäckman J S K, Svensson B H, et al. Quantification of ammonia-oxidising bacteria in limed and non-limed acidic coniferous forest soil using real-time PCR[J]. Soil biology and biochemistry, 2004, 36(12): 1935-1941. [78] Callesen I, Nilsson L O, Schmidt I K, et al. The natural abundance of 15N in litter and soil profiles under six temperate tree species: N cycling depends on tree species traits and site fertility[J]. Plant and soil, 2013, 368(1-2): 375-392. [79] Wang Y, Xu Z, Zheng J, et al. δ15N of soil nitrogen pools and their dynamics under decomposing leaf litters in a suburban native forest subject to repeated prescribed burning in southeast Queensland, Australia[J]. Journal of soils and sediments, 2015, 15(5): 1063-1074. |
[1] | 武燕, 黄青, 刘讯, 郑睿, 岑佳宝, 丁波, 张运林, 符裕红. 西南喀斯特地区马尾松人工林林龄对土壤理化性质的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 99-107. |
[2] | 鲁旭东, 董禹然, 李垚, 毛岭峰. 中国亚热带杉木人工林不同林分发育阶段的群落构建机制[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 67-73. |
[3] | 邢冰冰, 李垚, 毛岭峰. 植物功能性状系统发育保守性的类群和地理分异研究——以中国被子植物最大株高为例[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 59-66. |
[4] | 萨如拉, 王子瑞, 滑永春, 呼日查, 刘磊, 高明龙, 于晓雨. 基于结构方程模型的大兴安岭北部天然林森林生态系统恢复能力评价研究[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 196-204. |
[5] | 路文燕, 董灵波, 田园, 汪莎杉, 曲宣怡, 魏巍, 刘兆刚. 基于树种组成的大兴安岭天然林主要树种树高-胸径曲线研究[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 157-165. |
[6] | 宋歌, 韩芳, 许景伟, 杨志军, 穆豪祥, 王志勇, 王哲. 基于LandUSEM模型的山东沿海防护林树种分布适宜性分析[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 42-50. |
[7] | 邹朋峻, 关庆伟, 袁在翔, 谷雨晴, 吴茜, 牛莹莹, 陈霞, 金雪梅. 紫金山南麓枫香种群结构与动态特征[J]. 南京林业大学学报(自然科学版), 2023, 47(3): 157-163. |
[8] | 孙美佳, 周志勇, 王勇强, 沈颖, 夏威. 有机物添加对山西太岳山油松林土壤呼吸及碳组分的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 67-75. |
[9] | 姚楠, 刘广全, 姚顺波, 贾磊, 林颖, 邓元杰, 侯孟阳. 基于坡度视角的黄土高原退耕还林(草)工程碳汇效应分析[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 180-188. |
[10] | 王麒淞, 国庆喜. 吉林东部天然次生林下光强衰减的空间分布特征[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 101-108. |
[11] | 邹晓明, 王国兵, 葛之葳, 谢友超, 阮宏华, 吴小巧, 杨艳. 林业碳汇提升的主要原理和途径[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 167-176. |
[12] | 徐晨, 阮宏华, 吴小巧, 谢友超, 杨艳. 干旱影响森林土壤有机碳周转及积累的研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 195-206. |
[13] | 张瑞婷, 杨金艳, 阮宏华. 树干液流对环境变化响应研究的整合分析[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 113-120. |
[14] | 李林珂, 王一诺, 薛潇, 张文, 吴焦焦, 高岚, 谭星, 荣星宇, 段儒蓉, 刘芸. 黄栌光合和呈色特性对重庆阴雨天气的响应[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 95-103. |
[15] | 夏捷, 陈胜, 吴一凡, 张玮, 谢锦忠. 种植竹荪后毛竹林土壤微生物生物量和微生物熵的动态变化[J]. 南京林业大学学报(自然科学版), 2022, 46(4): 127-134. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||