[1] Sakurada I, Nukushina Y, Ito T. Experimental determination of the elastic modulus of crystalline regions in oriented polymers[J]. Journal of polymer science, 1962, 57(165): 651-660.
[2] Frone A N, Panaitescu D M, Donescu D, et al. Preparation and characterization of PVA composites with cellulose nanofibers obtained by ultrasonication[J]. BioResources, 2011, 6(1): 487-512.
[3] Wang S, Cheng Q. A novel process to isolate fibrils from cellulose fibers by high-intensity ultrasonication, Part 1: Process optimization[J]. Journal of applied polymer science, 2009, 113(2): 1270-1275.
[4] Biyani M V, Foster E J, Weder C. Light-healable supramolecular nanocomposites based on modified cellulose nanocrystals[J]. ACS macro letters, 2013, 2(3): 236-240.
[5] Cheng Q, Wang S, Rials T G. Poly(vinyl alcohol)nanocomposites reinforced with cellulose fibrils isolated by high intensity ultrasonication[J]. Composites part A: applied science and manufacturing, 2009, 40(2): 218-224.
[6] Shin Y J, Ham Y R, Kim S H, et al. Application of cyclophosphazene derivatives as flame retardants for ABS[J]. Journal of industrial and engineering chemistry, 2010, 16(3): 364-367.
[7] Hsieh Y L. Cellulose nanocrystals and self-assembled nanostructures from cotton, rice straw and grape skin: a source perspective[J]. Journal of materials science, 2013, 48(22): 7837-7846.
[8] Peng Y, Gardner D J, Han Y. Drying cellulose nanofibrils: in search of a suitable method[J]. Cellulose, 2012, 19(1): 91-102.
[9] Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J L, et al. The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose[J]. Biomacromolecules, 2007, 9(1): 57-65.
[10] Han J, Zhou C, Wu Y, et al. Self-assembling behavior of cellulose nanoparticles during freeze-drying: Effect of suspension concentration, particle size, crystal structure, and surface charge[J]. Biomacromolecules, 2013, 14(5): 1529-1540.
[11] Cho S Y, Yun Y S, Jin H J. Carbon nanofibers prepared by the carbonization of self-assembled cellulose nanocrystals[J]. Macromolecular research, 2014, 22(7): 753-756.
[12] 杨雪慧,汤丽娟,章蓉,等. 农作物秸秆表面改性处理的研究进展[J]. 南京林业大学学报(自然科学版),2013, 37(3):157-162.
Yang X H, Tang L J, Zhang R, et al. Review on progress of crop straws surface modification[J]. Journal of Nanjing Forestry University(natural sciences edition),2013,36(3): 157-162.
[13] 何文,阮氏香江,蒋身学,等. 偶联剂对HDPE基竹塑复合材料性能的影响[J]. 南京林业大学学报(自然科学版),2014, 38(6):110-114.
He W, Nguyen T H G, Jiang S X, et al. Effect of MAH-g-PP on properties of bamboo flour(BF)/highdensity polyethylene(HDPE)composites[J]. Journal of Nanjing Forestry University(natural sciences edition),2014,38(6): 110-114.
[14] 黄润州,WU Q L,张洋. 偶联剂对木塑复合材料冲击强度与热膨胀性能的影响[J]. 南京林业大学学报(自然科学版),2012, 36(3):91-95.
Huang R Z,Wu Q L,Zhang Y. Effects of coupling agent treatment on impact strength and thermal expansion performance of wood plastic composite[J]. Journal of Nanjing Forestry University(natural sciences edition),2012,36(3):91-95.
[15] Adam C, Lacoste J, Lemaire J. Photo-oxidation of elastomeric materials: Part 3—Photo-oxidation of acrylonitrile-butadiene copolymer[J]. Polymer degradation and stability, 1990, 27(1): 85-97.
[16] Gong G, Pyo J, Mathew A P, et al. Tensile behavior, morphology and viscoelastic analysis of cellulose nanofiber-reinforced(CNF)polyvinyl acetate(PVAc)[J]. Composites part A: applied science and manufacturing, 2011, 42(9): 1275-1282.
[17] Corrêa A C, de Morais Teixeira E, Pessan L A, et al. Cellulose nanofibers from curaua fibers[J]. Cellulose, 2010, 17(6): 1183-1192. |