为了改善纳米纤维素晶须(CNC)在非亲水性树脂中应用时分散困难、热分解温度低、与基体相容性较差等缺点,将冷冻干燥的纳米纤维素在高聚物的有机溶液中预先包覆,然后与苯乙烯-丁二烯-丙烯腈树脂(ABS)、马来酸酐接枝聚乙烯在挤出机内熔融共混制成ABS/CNC复合材料。通过扫描电镜(SEM)、热重分析测试(TGA)、拉伸性能测试等手段对复合材料进行性能表征。SEM观察发现CNC是以层状纳米片的形式均匀地与ABS复合; 力学性能测试表明,接枝聚乙烯的加入有利于改进CNC与ABS的界面相容性,与纯ABS相比,添加0.7%CNC的复合材料其拉伸强度提高了15.6%,弹性模量提高了52%。TGA测试结果表明,CNC的热分解温度由211 ℃提高到263 ℃,大大改善了CNC在聚合物加工过程中的温度适应性。
Abstract
To overcome the disadvantages of dispersion difficulty, thermal degradation and poor compatibility with matrix of cellulose nanocrystal(CNC)in the non-hydrophilic resin application, freeze-dried CNCs were first coated with polymer in organic solution, and then melt blended with acrylonitrile-butadiene-styrene(ABS)and PE-g-MAH to prepare the composites. SEM images demonstrated that CNCs can disperse homogeneously in the ABS matrix in the form of nanosheet. Tensile tests revealed that grafted polyethylene was critical to increase the compatibility of CNC with the matrix, and the tensile strength and modulus increased by 15.6% and 52%, respectively, with a CNC content of 0.7%. TGA test indicated that the thermal decomposition temperature of CNC increased from 211 ℃ to 263 ℃, which improved the temperature adaptability of CNC in the process of polymer processing.
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Sakurada I, Nukushina Y, Ito T. Experimental determination of the elastic modulus of crystalline regions in oriented polymers[J]. Journal of polymer science, 1962, 57(165): 651-660.
[2] Frone A N, Panaitescu D M, Donescu D, et al. Preparation and characterization of PVA composites with cellulose nanofibers obtained by ultrasonication[J]. BioResources, 2011, 6(1): 487-512.
[3] Wang S, Cheng Q. A novel process to isolate fibrils from cellulose fibers by high-intensity ultrasonication, Part 1: Process optimization[J]. Journal of applied polymer science, 2009, 113(2): 1270-1275.
[4] Biyani M V, Foster E J, Weder C. Light-healable supramolecular nanocomposites based on modified cellulose nanocrystals[J]. ACS macro letters, 2013, 2(3): 236-240.
[5] Cheng Q, Wang S, Rials T G. Poly(vinyl alcohol)nanocomposites reinforced with cellulose fibrils isolated by high intensity ultrasonication[J]. Composites part A: applied science and manufacturing, 2009, 40(2): 218-224.
[6] Shin Y J, Ham Y R, Kim S H, et al. Application of cyclophosphazene derivatives as flame retardants for ABS[J]. Journal of industrial and engineering chemistry, 2010, 16(3): 364-367.
[7] Hsieh Y L. Cellulose nanocrystals and self-assembled nanostructures from cotton, rice straw and grape skin: a source perspective[J]. Journal of materials science, 2013, 48(22): 7837-7846.
[8] Peng Y, Gardner D J, Han Y. Drying cellulose nanofibrils: in search of a suitable method[J]. Cellulose, 2012, 19(1): 91-102.
[9] Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J L, et al. The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose[J]. Biomacromolecules, 2007, 9(1): 57-65.
[10] Han J, Zhou C, Wu Y, et al. Self-assembling behavior of cellulose nanoparticles during freeze-drying: Effect of suspension concentration, particle size, crystal structure, and surface charge[J]. Biomacromolecules, 2013, 14(5): 1529-1540.
[11] Cho S Y, Yun Y S, Jin H J. Carbon nanofibers prepared by the carbonization of self-assembled cellulose nanocrystals[J]. Macromolecular research, 2014, 22(7): 753-756.
[12] 杨雪慧,汤丽娟,章蓉,等. 农作物秸秆表面改性处理的研究进展[J]. 南京林业大学学报(自然科学版),2013, 37(3):157-162.
Yang X H, Tang L J, Zhang R, et al. Review on progress of crop straws surface modification[J]. Journal of Nanjing Forestry University(natural sciences edition),2013,36(3): 157-162.
[13] 何文,阮氏香江,蒋身学,等. 偶联剂对HDPE基竹塑复合材料性能的影响[J]. 南京林业大学学报(自然科学版),2014, 38(6):110-114.
He W, Nguyen T H G, Jiang S X, et al. Effect of MAH-g-PP on properties of bamboo flour(BF)/highdensity polyethylene(HDPE)composites[J]. Journal of Nanjing Forestry University(natural sciences edition),2014,38(6): 110-114.
[14] 黄润州,WU Q L,张洋. 偶联剂对木塑复合材料冲击强度与热膨胀性能的影响[J]. 南京林业大学学报(自然科学版),2012, 36(3):91-95.
Huang R Z,Wu Q L,Zhang Y. Effects of coupling agent treatment on impact strength and thermal expansion performance of wood plastic composite[J]. Journal of Nanjing Forestry University(natural sciences edition),2012,36(3):91-95.
[15] Adam C, Lacoste J, Lemaire J. Photo-oxidation of elastomeric materials: Part 3—Photo-oxidation of acrylonitrile-butadiene copolymer[J]. Polymer degradation and stability, 1990, 27(1): 85-97.
[16] Gong G, Pyo J, Mathew A P, et al. Tensile behavior, morphology and viscoelastic analysis of cellulose nanofiber-reinforced(CNF)polyvinyl acetate(PVAc)[J]. Composites part A: applied science and manufacturing, 2011, 42(9): 1275-1282.
[17] Corrêa A C, de Morais Teixeira E, Pessan L A, et al. Cellulose nanofibers from curaua fibers[J]. Cellulose, 2010, 17(6): 1183-1192.
基金
收稿日期:2015-05-18 修回日期:2015-10-08
基金项目:江苏高校品牌专业建设工程资助项目(PPZY2015B178); 常州工程职业技术学院科研基金项目(KJ15302); 南京林业大学优秀博士学位论文创新基金项目
第一作者:马立波(malibojsw@163.com)。*通信作者:张洋(yangzhang31@126.com),教授。
引文格式:马立波,杨小林,王思群,等. 纳米纤维素丙烯腈-丁二烯-苯乙烯复合材料的特性[J]. 南京林业大学学报(自然科学版),2016,40(1):179-182.